Омский филиал Федерального государственного бюджетного учреждения науки Института математики им. С.Л. Соболева Сибирского отделения Российской академии наук (ОФ ИМ СО РАН)

На правах рукописи

Тюнин Николай Николаевич

АНАЛИЗ И РЕШЕНИЕ ЗАДАЧ ОПТИМИЗАЦИИ НАПРАВЛЕННОСТИ ФАЗИРОВАННЫХ АНТЕННЫХ РЕШЕТОК КОРОТКОВОЛНОВОГО ДИАПАЗОНА

2.3.1 — Системный анализ, управление и обработка информации, статистика

ДИССЕРТАЦИЯ

на соискание учёной степени кандидата технических наук

Научный руководитель: доктор физико-математических наук, доцент Еремеев Антон Валентинович

Оглавление

			Стр.
введе	ние .		4
Глава 1.	Зада	ча оптимизации направленности фазированных	
	анте	нных решеток	23
1.1		ные понятия	23
1.2	Поста	новка задачи	24
1.3	Метод	цы решения	27
1.4	Форму	улировка задачи в действительных числах	28
1.5	Верхн	яя оценка нормы допустимых решений	30
1.6	Масш	табирование произвольного решения в допустимую область	31
Глава 2.	Стру	уктурные свойства задачи оптимизации	
	напр	авленности фазированных антенных решеток	32
2.1	Поста	новка вычислительного эксперимента	32
	2.1.1	Тестовые примеры	33
	2.1.2	Результаты вычислительного эксперимента	34
2.2	Колич	ество локальных оптимумов и их расположение	38
2.3	Прове	рка необходимых условий локальной оптимальности	40
2.4	Экспе	риментальная проверка устойчивости решений	42
2.5	Иссле	дование симметрий задачи	43
	2.5.1	Общие положения	43
	2.5.2	Нахождение непрерывной подгруппы симметрий	49
	2.5.3	Вычислительный эксперимент	51
	2.5.4	Учет симметрии при использовании решателя BARON	53
Глава 3.	Алго	ритм дифференциальной эволюции для задачи	
	опти	мизации фазированных антенных решеток	55
3.1	Базові	ый вариант алгоритма	55
3.2	Гибри	дный вариант алгоритма дифференциальной эволюции	57
3.3	Вычис	слительный эксперимент	59
3.4	Заклю	чение	62

		(Стр.
Глава 4.	Возможности оптимизации фазированных антенных		
	решеток в различных условиях	 , .	63
4.1	Исследование радиочастотных зависимостей	 	63
4.2	Исследование взаимного влияния излучателей	 . .	67
	4.2.1 Широкополосные вертикальные излучатели	 . .	68
	4.2.2 Широкополосные вертикальные диполи	 . .	68
	4.2.3 Симметричные вертикальные диполи	 . .	69
	4.2.4 Интерпретация результатов экспериментов по		
	исследованию взаимного влияния излучателей	 , <u>.</u>	70
ЗАКЛЮ	ОЧЕНИЕ	 , <u>.</u>	82
СПИСС	ОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ	 , <u>.</u>	84
ПУБЛИ	КАЦИИ АВТОРА ПО ТЕМЕ ДИССЕРТАЦИИ	 , <u>.</u>	89
ПРИЛО	жения	 	91
Прил	пожение A	 	91
Прил	пожение Б	 . .	93
-	IOWEITHE R		

ВВЕДЕНИЕ

В настоящее время разработка и анализ эффективных систем радиосвязи имеет большое значение для народного хозяйства. Одной из актуальных задач в этой области является задача оптимизации направленности фазированных антенных решеток (ФАР), представляющих собой антенные системы, распределение фаз и амплитуд на элементах которых позволяет получать направленное излучение. Будучи собранными в антенную систему, излучатели формируют диаграмму направленности, которая зависит от их расположения и конструкции, а также выбора фаз и амплитуд сигналов, подаваемых на вход излучателей. Возможность формирования направленного излучения позволяет достичь увеличения дальности радиосвязи или уменьшить затраты ресурсов (энергии, площади, занимаемой антеннами, стоимости оборудования и др.).

В диапазоне сверхвысоких частот (СВЧ) задачи оптимизации фаз и амплитуд излучателей, как правило, решаются с использованием некоторых упрощающающих предположений [9; 12; 55]. Однако в диапазоне высоких частот (ВЧ) задача оптимизации направленности ФАР оказывается более сложной и потому менее изучена [10; 13]. При ограничении суммарной мощности, подаваемой на антенную систему, задача выбора фаз и амплитуд на излучателях может быть решена аналитически [15]. Однако при ограничении на мощность по каждому входу антенной системы требуется решение невыпуклых задач квадратичного программирования, которые, вообще говоря, являются NP-трудными [40]. Для решения таких задач могут применяться методы ветвей и границ [5], отсечений [32], DC-программирования [8], полуопределенной релаксации [26], эволюционных вычислений [24; 48], локального поиска [3] и др.

Целью данной работы является создание алгоритмов оптимизации направленности излучения ФАР и исследование области применимости различных методов решения этой задачи.

Для достижения указанной цели были решены следующие задачи:

- 1. Изучить структуру множества локальных оптимумов и наличие симметрий в рассматриваемой задаче.
- 2. Разработать алгоритмы решения задачи, учитывающие структуру множества локальных оптимумов и использующие известные методы математической оптимизации.

- 3. Сравнить в вычислительных экспериментах предложенные алгоритмы с известными.
- 4. Исследовать на основе вычислительных экспериментов влияние расположения излучателей и используемой радиочастоты на эффективность работы алгоритмов оптимизации.
- 5. Сравнить коэффициент усиления ФАР при оптимизации направленности излучения с учетом взаимного влияния излучателей и без учета этого фактора.

Научная новизна:

- 1. Предложенный гибридный алгоритм дифференциальной эволюции отличается от известных ранее наличием процедуры адаптации штрафа, в которой учитывается возврат в допустимую область посредством масштабирования решения, что приводит к сокращению погрешности получаемых решений.
- 2. Ранее при решении задач оптимизации направленности ФАР, как правило, не использовалась инвариантность основных свойств решений относительно равного сдвига фаз во всех излучателях. Однако как показано в настоящей работе, учет такой инвариантности позволяет снизить размерность задачи и сократить среднее время счета решателя, основанного на методе ветвей и границ и локальном спуске.
- 3. Впервые для задачи оптимизации направленности ФАР показано наличие кластеров из локальных оптимумов с одинаковым значением целевой функции и не эквивалентных относительно равного сдвига фаз во всех излучателях.
- 4. Впервые обоснована целесообразность учета взаимного влияния излучателей при оптимизации направленности ФАР КВ диапазона.

Практическая значимость. Разработанные алгоритмы оптимизации возбуждения ФАР могут применяться в системах связи коротковолнового диапазона для увеличения дальности радиосвязи. Созданное программное обеспечение позволяет производить необходимые для этого расчеты. Полученное обоснование необходимости учета взаимного влияния излучателей при оптимизации напраленности ФАР, а также результаты вычислительных экспериментов для различных вариантов ФАР могут быть полезны при проектировании новых антенных систем. Практическая значимость результатов исследования при

выполнении работ по антенной тематике подтверждена в АО «Омский научноисследовательский институт приборостроения».

Теоретическая значимость. Осуществленный в работе переход от задачи оптимизации направленности ФАР в комплексных числах к задаче математического программирования позволил переформулировать в терминах математического программирования известные физические свойства задачи, в частности, инвариантность относительно сдвига фаз и закон сохранения энергии. Благодаря такому переносу в работе [25] представленные в диссертации примеры симметрий были теоретически обобщены на более широкий класс задач квадратичного программирования с использованием теории групп Ли. Предложенная процедура возврата в допустимую область с помощью масштабирования вектора решения, а также построенная верхняя оценка эвклидовой нормы допустимых решений могут быть использованы при разработке новых методов решения задач, аналогичных рассмотренной в работе. Результаты диссертации используются в учебном процессе в ФГАОУ ВО «Омский государственный университет им. Ф.М. Достоевского» в составе лекционного курса «Эволюционные алгоритмы».

Методология и методы исследования. Методы градиентной оптимизации, эволюционные алгоритмы, проведение вычислительного эксперимента, методы математической статистики, использование линейных симметрий задачи.

Основные положения, выносимые на защиту:

- 1. Для большинства рассмотренных конфигураций ФАР задача имеет несколько кластеров из локальных оптимумов с одинаковым значением целевой функции, не эквивалентных относительно равного сдвига фаз во всех излучателях.
- 2. Непрерывная подгруппа симметрий рассматриваемой задачи одномерна и ее элементы соответствуют сдвигу фаз во всех излучателях на равную величину, что позволяет снизить размерность задачи на одну переменную и сократить время счета.
- 3. Использование метода ДЭ в комбинации с градиентным подъемом позволяет достичь конкурентоспособных решений по сравнению с коммерческим решателем BARON в задаче оптимизации фаз и амплитуд ФАР, особенно на задачах большой размерности.

- 4. Имеется интервал параметров кольцевых ФАР, в котором учет взаимного влияния излучателей ведет к существенному увеличению коэффициента усиления в заданном направлении.
- 5. Коэффициент усиления, соответствующий решению задачи оптимизации направленности ФАР, может быть существенно больше по сравнению с коэффициентом усиления, получаемым стандартным методом фазирования без учета взаимного влияния (имеются случаи, когда отличие составляет 5 дб).

Соответствие научной специальности. Работа соответствует научной специальности 2.3.1 по п. 4. — Разработка методов и алгоритмов решения задач системного анализа, оптимизации, управления, принятия решений, обработки информации и искусственного интеллекта; по п. 5. — Разработка специального математического и алгоритмического обеспечения систем анализа, оптимизации, управления, принятия решений, обработки информации и искусственного интеллекта; по п. 9. — Разработка проблемно-ориентированных систем управления, принятия решений и оптимизации технических объектов; по п. 15. — Теоретический анализ и экспериментальное исследование функционирования элементов систем управления в нормальных и специальных условиях с целью улучшения технико-экономических и эксплуатационных характеристик.

Достоверность научных положений, выводов и практических рекомендаций, полученных в диссертации, подтверждается точной формулировкой задач и критериев, достаточным количеством численных экспериментов и исследованиями адекватности модели с точки зрения физических принципов. Методика проведения численных экспериментов подробно описана, что позволяет воспроизвести полученные результаты.

Апробация работы. Основные результаты работы докладывались на:

- 1. Международной конференции «Теория математической оптимизации и исследование операций (МОТОР)» Петрозаводск, июль, 2022.
- 2. Международной конференции «Теория математической оптимизации и исследование операций (МОТОР)» Иркутск, июль 2021.
- 3. Семинаре «Современные проблемы радиофизики и радиотехники», ОмГУ им. Ф.М. Достоевского, Омск, 2021.
- 4. Международной конференции «Теория математической оптимизации и исследование операций (МОТОР)» Екатеринбург, июль 2019.

- 5. V Международной научно-технической конференции «Радиотехника, электроника и связь» Омск, октябрь 2019.
- 6. VII Международной конференции «Проблемы оптимизации и их приложения» Омск, июль 2018.
- 7. Семинаре «Математическое моделирование и дискретная оптимизация», ОФ ИМ СО РАН, Омск, 2018 2022.
- 8. Семинаре «Перспективы развития радиосвязи и приборостроения», АО «ОНИИП», Омск, 2018.

Личный вклад. Автор адаптировал метод градиентного подъема и алгоритм дифференциальной эволюции к специфике рассматриваемой задачи, осуществил переход к задаче квадратичного программирования, исходя из постановки в комплексных числах, исследовал наличие непрерывных симметрий, проводил вычислительные эксперименты, исследовал устойчивость решений к возмущению исходных данных, формулировал выводы. Основные результаты диссертационного исследования получены в ходе выполнения гранта РФФИ № 19-37-90066 по конкурсу «Аспиранты» в 2019-2021 гг. в Омском филиале Института математики им. С.Л. Соболева СО РАН.

Публикации. Основные результаты по теме диссертации изложены в 8 печатных изданиях, 4 из которых изданы в журналах, рекомендованных ВАК или приравненных к ним, 3 — в тезисах докладов. Зарегистрирована 1 программа для ЭВМ.

Объем и структура работы. Диссертация состоит из введения, 4 глав, заключения и 2 приложений. Полный объём диссертации составляет 102 страницы, включая 33 рисунка и 7 таблиц. Список литературы содержит 63 наименования.

Во введении обосновывается актуальность исследований, проводимых в рамках данной диссертационной работы, приводится обзор научной литературы по изучаемой проблеме, формулируется цель, ставятся задачи работы, излагается научная новизна и практическая значимость представляемой работы, приводится структура и содержание.

Первая глава посвящена обзору литературы и постановке задачи в виде задачи математического программирования. Здесь рассматриваются источники, позволяющие сформулировать постановку задачи [6; 15], приводится анализ аналогичных исследований [26; 38; 55]. Также в рамках этого раздела произво-

дится сравнение результатов работы различных методов решения поставленной задачи.

В рассматриваемой в данной работе задаче требуется максимизировать излучение антенной решетки в заданном направлении при ограничениях на мощность, подводимую к каждому излучателю. В терминах комплексных токов, подводимых к излучателям, эта задача сформулирована в работах [13; 15]. Целевая функция задачи оптимизации определяется следующим образом:

$$F = \mathbf{u}^{+} \mathbf{A} \mathbf{u} \,, \tag{1}$$

где верхний индекс + означает эрмитово сопряжение, \mathbf{u} — вектор-столбец комплексных напряжений, подаваемых на излучатели системы, $A=(a_{ij})$,

$$a_{ij} = \sum_{l=1}^{2} \overline{f}_{i}^{(l)} f_{j}^{(l)}.$$
 (2)

Здесь $f_i^{(l)}$ — парциальное поле, то есть поле, которое излучается при подаче единичного тока на i-ю точку питания излучающей системы, в то время как ток в других точках питания равен нулю.

В данной работе рассматривается случай, когда ограничение на мощность накладывается по каждой точке питания, т.е. учитывается ограниченные возможности усилителей, питающих излучатели [15]. В случае ограничения суммарной мощности, подаваемой на всю антенную систему, задача может быть решена аналитически [15]. В других постановках ограничения накладываются не на мощность, а на излучение [26]. В рассматриваемом здесь случае задача формулируется в виде:

$$\begin{cases} \mathbf{u}^{+}\mathbf{A}\mathbf{u} \to \max, \\ 0 \leqslant \mathbf{u}^{+}\mathbf{B}^{(1)}\mathbf{u} \leqslant 1, \\ \dots \\ 0 \leqslant \mathbf{u}^{+}\mathbf{B}^{(n)}\mathbf{u} \leqslant 1, \\ \mathbf{u} \in \mathbb{C}^{N} \end{cases}$$
(3)

где \mathbb{C} – поле комплексных чисел, n – число точек питания, на которые накладываются ограничения (в общем случае n может быть не равно N),

$$\mathbf{B}^{(k)} = \frac{1}{4P_{max}^{(k)}} (\mathbf{Y}^{+} \mathcal{P}^{(k)} + \mathcal{P}^{(k)} \mathbf{Y}), \qquad (4)$$

 $P_{max}^{(k)}$ — максимально допустимая мощность в k-й точке питания, $\mathcal{P}^{(k)}$ — матрицыпроекторы, имеющие единственный ненулевой элемент $\mathcal{P}_{kk}^{(k)}=1$. Матрицыпроекторы имеют размерность $N\times N$. Поскольку аргументом целевой функции является вектор комплексных токов, задачу оптимизации направленности ФАР КВ диапазона также можно назвать задачей оптимизации фаз и амплитуд. За \mathbf{Y} обозначается матрица проводимостей.

Следует отметить, что задача (3), сформулированная в комплексных числах, имеет симметрию относительно преобразования $\mathbf{u} \to e^{\boldsymbol{j} \varphi} \mathbf{u}$ всех комплексных координат (по произвольному углу φ). За \boldsymbol{j} здесь обозначена мнимая единица. Данная симметрия может найти применение для уменьшения размерности области поиска на единицу. Например, фиксируя $Im(y_N)=0$, что эквивалентно добавлению ограничения $x_{2N}=0$ к задаче (5).

Для разработки алгоритма решения задачи удобно переформулировать ее в вещественных числах. В вещественных числах задача (3) эквивалентна следующей:

$$\begin{cases} \mathbf{x}^{T}\mathbf{G}\mathbf{x} \to \max, \\ 0 \leqslant \mathbf{x}^{T}\mathbf{H}^{(1)}\mathbf{x} \leqslant 1, \\ \dots \\ 0 \leqslant \mathbf{x}^{T}\mathbf{H}^{(n)}\mathbf{x} \leqslant 1, \\ \mathbf{x} \in \mathbb{R}^{2N}. \end{cases}$$
 (5)

Задача (5) имеет целевую функцию, заданную квадратичной формой с положительно полуопределенной матрицей ${\bf G}$. Каждое ограничение формулируется квадратичной формой, определенной симметричной матрицей ${\bf H}^{(k)}, k=\overline{1,n}$ с двумя парами идентичных собственных значений, два из которых положительны, а другие два отрицательны или равны нулю, все остальные собственные числа равны нулю.

Для задачи (5) существует преобразование, позволяющее привести к допустимой области решение \mathbf{x} , которое нарушает только ограничивающие неравенства задачи (5) вида $\mathbf{x}^T\mathbf{H}^{(k)}\mathbf{x}\leqslant 1$:

$$\mathbf{x}' := \alpha(\mathbf{x})^{-1/2}\mathbf{x},\tag{6}$$

где $\alpha(\mathbf{x}) := \max_{k=\overline{1,n}} \mathbf{x}^T \mathbf{H}^{(k)} \mathbf{x}$. Данная процедура применяется для выбора начального решения, а также для масштабирования итогового решения градиентного подъема и может использоваться в метаэвристиках.

В вычислительных экспериментах бывает полезно ограничить множество допустимых решений задачи шаром или параллелепипедом, так как это позволяет более обоснованно выбрать начальное решение для итерационных методов с мультистартом или сократить перебор в методе ветвей и границ. Отметим, что если вектор х удовлетворяет всем ограничениям задачи (5), то

$$||\mathbf{x}|| \leqslant \sqrt{\frac{N}{\lambda_{\min}}}.$$
 (7)

Глобально-оптимальное решение задачи невыпуклого математического программирования вида (5) может быть найдено методом ветвей и границ [33; 56] или с использованием методов DC программирования [32; 54]. Локально-оптимальное решение задачи может быть найдено средствами градиентной оптимизации или методом Ньютона. В случае большой размерности могут быть применены различные метаэвристики (см. [23; 53]).

Процедура решения задачи оптимизации ФАР при ограничении мощности по каждой точке питания состоит в следующем:

- 1. Для каждого излучателя в решетке рассчитать парциальные компоненты полей $f_i^{(l)}, i=\overline{1,N}, l=\overline{1,2}.$
- 2. Вычислить матрицы **G** and $\mathbf{H}^{(k)}, k = \overline{1,n}$.
- 3. Оценить радиус допустимой области.
- 4. Решить задачу (5) с дополнительными ограничениями $x_N = 0, ||\mathbf{x}|| \leqslant \sqrt{\frac{N}{\lambda_{\min}}}.$

Данный подход может гарантировать нахождение как локального, так и глобального оптимума в зависимости от решателя, используемого на шаге 4. Как один из базовых оптимизационных методов в главе 1 рассматривается метод градиентной оптимизации (максимизационный вариант) с алгоритмом одномерного поиска Дэвиса, Свенна и Кэмпи (ДСК). Далее целевая функция задачи (5) будет обозначатся символом \tilde{F} .

От задачи условной оптимизации производится переход к задаче безусловной оптимизации методом штрафных функций, а именно - методом внешней точки [2; 16]:

$$\mathbf{x}^T \mathbf{G} \mathbf{x} - r \cdot \sum_{k=1}^n \left(\min \left(0, \mathbf{x}^T \mathbf{H}^{(k)} \mathbf{x} \right) + \min \left(0, 1 - \mathbf{x}^T \mathbf{H}^{(k)} \mathbf{x} \right) \right)^4 \to \max,$$
 (8)

где r - достаточно большой штрафной параметр. Алгоритм градиентной оптимизации повторяется многократно, при этом используется случайно сгенерированный вектор $\mathbf{x} \in \mathbb{R}^{2N}$ в качестве стартовой точки.

Вторая глава посвящена исследованию структуры множества локальных оптимумов с помощью различных алгоритмов оптимизации, производится анализ непрерывных групп линейных симметрий задачи.

Для организации вычислительных экспериментов был разработан программный комплекс «Ехрі» (см. приложение Б), зарегистрированный в государственном реестре программ для ЭВМ [63]. Вычислительный эксперимент был поставлен для задач, построенных на основе следующих типов ФАР, выпускаемых серийно и представляющих интерес для промышленности: широкополосных вертикальных излучателей (ШВИ), широкополосных вертикальных диполей (ШВД) и симметричных вертикальных диполей (СВД). При моделировании полей был использован пакет NEC2, для которого были предоставлены соответствующие геометрические конфигурации антенных систем. В качестве рабочей частоты было выбрано 5МГц. Рассмотрены квадратные ФАР конфигурации 2х2, 3х3 и 5х5. Конфигурация 5х5 была рассмотрена только для решеток СВД, поскольку NEC2 не смог обработать 5х5 ШВИ и 5х5 ШВД из-за высокой сложности этих моделей. В случае с ФАР кольцевой структуры были рассмотрены решетки, состоящие из 8 и 16 излучателей. Также в рассмотрение были приняты укороченные СВД с длиной плеча 5м. (СВД'). В качестве направления максимизации излучения выбраны: азимутальный угол 45° , полярный угол 70° .

Здесь сравниваются результаты работы градиентного метода и решателя BARON в его режиме по умолчанию. Во всех экспериментах, описанных ниже, было установлено ограничение по времени 1000с. Сравнение алгоритмов, представляющих принципиально различные методы, по количеству вычислений целевой функции не является корректным, поэтому в данной работе идет сравнение именно по времени. Все эксперименты проводились на ЭВМ с процессором Intel i7 (тактовая частота: $2.8\Gamma\Gamma$ ц), O3V: 16Γ 6. В случае остановки градиентного метода (завершение по минимально допустимому приращению целевой функции 10^{-4}) алгоритм перезапускается заново до истечения запаса времени.

Во время каждой инициализации градиентного метода в главе 1 стартовая точка ${\bf x}$ выбирается независимо с равномерным распределением в кубе $[-5000,5000]^{2N}$. Лучшее из найденных таким образом решений принимается за конечный результат. Параметр штрафа r в методе градиентной оптимизации

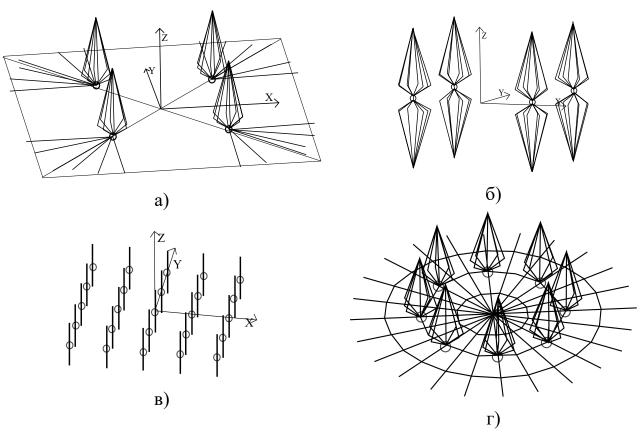


Рисунок 1 — ФАР различных конфигураций

установлен равным 10^6 на всех запусках. Такое значение было определено эмпирически. В таблице 1 приводятся результаты вычислительного эксперимента. Значения целевой функции " \tilde{F} " в точке, полученной алгоритмом градиентного подъема, приводятся после процедуры масштабирования (6). Для решателя ВАRON версии 18.5.8 было выбрано то же самое ограничение сверху на процессорное время, что и для градиентного метода (группа колонок "BARON"). Во всех таблицах колонка "t" содержит время до получения лучшего найденного решения или до установления глобальной оптимальности. Во всех запусках градиентного метода были получены решения, где активными оказались все ограничения вида $\mathbf{x}^T\mathbf{H}^{(k)}\mathbf{x}\leqslant 1$ и только они.

Из таблицы 1 видно, что на всех видах решеток, кроме решеток СВД конфигураций 3х3 и 5х5, а также СВД' конфигураций 2х2 и 3х3, разница в значениях целевой функции не превосходит 1%. Для решеток СВД конфигураций 3х3 и 5х5, а также СВД' конфигураций 2х2 и 3х3 градиентный алгоритм существенно уступает по качеству найденного решения. Кроме решеток ШВИ и ШВД конфигурации 2х2 ВАRON демонстрирует лучшее время счета.

Следует отметить, что для обоих алгоритмов время, затраченное на поиск решения, было либо существенно меньше, либо сравнимо со временем,

Таблица 1 — Результаты оптимизации, полученные с помощью градиентного подъема, решателя BARON и ДЭ.

Тип	$\sqrt{rac{N}{\lambda_{\min}}}$	Гр	ад.	BA	ДЭ	
1 1111		\tilde{F}	t, c	$ ilde{F}$	t, c	$ ight ilde{F}$
ШВИ 2х2	13.6	138	0.054	139	0.12	139
ШВИ 3х3	22.5	576	0.93	581	0.34	581
ШВД 2х2	21	460	0.13	464	0.27	464
ШВД 3х3	82.2	915	24.4	925	0.34	924
СВД 2х2	44.7	357	1.9	361	0.16	361
СВД 3х3	641.9	1138	25.6	1261	0.38	1163
СВД 5х5	$1.1 \cdot 10^5$	5318	1000	6716	1000	7132
СВД' 2х2	$2.3 \cdot 10^4$	233	2.52	253	0.25	198
СВД' 3х3	$6 \cdot 10^{5}$	664	71	1153	1.48	834
СВД' 5х5	_	1382	1000	33.5	217.94	2755
Кольц. 8	87	217	8.06	218	0.23	218
Кольц. 16	154	727	90.9	734	1.37	732

затраченным на построение исходных данных пакетом моделирования NEC, что делает оба подхода равноценными по времени работы с практической точки зрения. При увеличении времени счета BARON до 50000с. для ФАР конфигураций ШВИ 2х2, ШВД 2х2 и ШВИ 3х3 была доказана глобальная оптимальность найденного решателем BARON решения из таблицы 1. Решатель ANTIGONE, разработанный для решения многоэкстремальных задач математической оптимизации, также был опробован в режиме его настроек по умолчанию, но в большинстве тестовых примеров возвращал нулевое решение, которое является стационарной точкой, но не является локальным оптимумом.

Для оценки общего числа локальных оптимумов использовался метод переписи Шнабеля. Данный метод имеет применение в экологии и заключается в выводе статистических оценок численности популяции на основе числа особей, помеченных в результате эксперимента, из популяции с неизменным составом. В [1; 49] предлагается адаптация такого метода для оценки числа локальных оптимумов. В таблице 2 приводится статистика по числу различных точек остановки (в пределах заданной точности) процедуры мультистарта в течение 1000с процессорного времени. Для каждого решения была применена процедура линеаризации задачи и проверки необходимых условий локальной оптимальности.

Здесь M — число выполненных запусков за отведенное время, M_{ne} — число групп решений, отличающихся не более чем на 10% по каждой из координат, M_f — число групп значений целевой функции у таких неэквивалентных решений (с точностью до 10%, приведенных в таблице 1). $M_{y\approx 0}$ — число групп решений, для которых были выполнены необходимые условия локальной оптимальности. $\mathcal B$ и $\mathcal L$ — оценка нижней границы и оценка максимального правдоподобия числа локальных оптимумов, рассчитанные по методу переписи Шнабеля. Доверительная вероятность для данного метода была выбрана равной 0.95. Оценки для числа решений с различными значениями целевой функции обозначены $\mathcal B_{M_f}$ и $\mathcal L_{M_f}$. Оценки для числа решений, для которых были выполнены необходимые условия локальной оптимальности, обозначены $\mathcal B_{M_v\approx 0}$ и $\mathcal L_{M_v\approx 0}$.

Таблица 2 — Структура множества локальных оптимумов.

ФАР	M	M_{ne}	M_f	\mathcal{B}_{M_f}	\mathcal{L}_{M_f}	$M_{y\approx 0}$	$\mathcal{B}_{M_{ypprox 0}}$	$\mathcal{L}_{M_{ypprox 0}}$
ШВИ 2х2	18368	4	1	1	1	4	4	4
ШВД 2х2	7678	4	1	1	1	4	4	4
СВД 2х2	523	1	1	1	1	1	1	1
СВД 3х3	39	9	2	2	2	5	5	5
СВД' 2х2	396	370	3	3	3	338	1000	1213
СВД' 3х3	14	14	3	3	3	1	1	1
ШВИ 3х3	1070	3	1	1	1	3	3	3
ШВД 3х3	41	4	4	4	4	1	1	1
Кольц. 8	124	9	2	2	2	9	9	9
Кольц. 16	11	6	1	1	1	6	6	6

На рис. 2 приведены диаграммы найденных локальных оптимумов, где по оси ординат отложены значения целевой функции, а по оси абсцисс — расстояние до лучшего известного решения. Диаграмма показывает, что значения, соответствующие одному и тому же значению целевой функции, могут находиться достаточно далеко друг от друга, что позволяет сделать предположение о наличии неучтенных симметрий задачи.

Известно [25], что любой элемент непрерывной подгруппы линейных симметрий задачи (5) может быть описан в виде (9).

$$Q = e^{\sum_{n} a_n G_n}. (9)$$

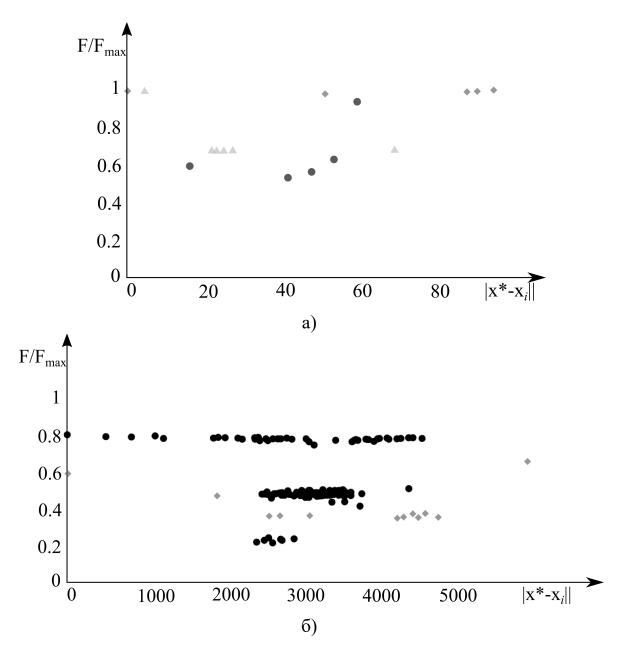


Рисунок 2 — Структура множества найденных решений. В случае а) точками обозначены результаты для кольцевых решеток, состоящих из 8 излучателей, ромбами — для кольцевых решеток, состоящих из 16 излучателей, треугольни-ками - для СВД 3х3. В случае б) точками обозначены результаты для СВД' 2х2, ромбами — для СВД' 3х3

где a_n — вещественные числа, G_n — генераторы в теоретико-групповом смысле. В качестве генераторов G_n можно выбрать косо-симметричные матрицы, которые содержат над главной диагональю один единичный элемент, симметричный ему противоположный элемент и остальные нули. Введем матрицу: $\mathbf{H}_{\Sigma} = \sum_i \mathbf{H}_i$, которая может быть представлена в виде конгруэнтного преобразования диагональной матрицы D:

$$\mathbf{H}_{\Sigma} = S^T D S,$$

при некоторой матрице S. Нахождение непрерывных подгрупп симметрий сводится к решению задачи (10).

$$\begin{cases}
\tilde{\mathbf{H}}_{i} \left(\sum_{n} a_{n} G_{n} \right) = \left(\sum_{n} a_{n} G_{n} \right) \tilde{\mathbf{H}}_{i}, \\
\tilde{\mathbf{G}} \left(\sum_{n} a_{n} G_{n} \right) = \left(\sum_{n} a_{n} G_{n} \right) \tilde{\mathbf{G}}.
\end{cases} (10)$$

$$\tilde{\mathbf{G}} = (S^{-1})^T \mathbf{A} S^{-1}, \qquad \tilde{\mathbf{B}}_i = (S^{-1})^T \mathbf{B}_i S^{-1}, \ i = 1, \dots, M.$$
 (11)

Вычислительный эксперимент по поиску непрерывной подгруппы симметрий состоит из следующих этапов:

- 1. Предварительная обработка. Возможная неточность данных нивелируется усреднением симметричных компонент матриц (матрицы **G** и **H** должны быть симметричны).
- 2. Преобразование $\mathbf{H}_{\Sigma} = \sum_i \mathbf{H}_i$ к канонической форме, используя метод Лагранжа для вычисления матриц S и S^{-1} .
- 3. Применение метода Гаусса к системе линейных уравнений (10) для вычисления генераторов \hat{G}_n .

Описанная процедура нахождения непрерывных групп симметрий применяется к примерам, описанным выше. Для всех рассмотренных задач было выявлено только наличие фазовой симметрии.

Учет данной симметрии при решении поставленной задачи оптимизации может быть реализован фиксацией в ноль одной из переменных задачи, например, $x_1=0$. В результате проведенных экспериментов было выявлено, что в большинстве случаев фиксация переменной привела к ускорению работы решателя BARON.

В третьей главе производится исследование возможности решения поставленной задачи методами дифференциальной эволюции (ДЭ).

Очевидным недостатком градиентного подъема является невозможность выйти из окрестности локального оптимума. Таким образом, данный алгоритм хорошо подходит лишь для работы в режиме мультистарта или же для уточнения некоторого заданного решения. Такое решение может быть получено, например, алгоритмом дифференциальной эволюции, который демонстрирует хорошие результаты на различных задачах [19; 21; 52] и в комбинации с градиентным алгоритмом может рассматриваться как альтернатива мультистарта.

Кратко опишем идею алгоритма. В начале происходит генерация популяции. Если нет дополнительной информации, особи популяции генерируются случайным образом с равномерным распределением. Затем каждая особь подвергается мутации путем присваивания ей признаков другой особи. Для этого случайным образом выбираются неравные друг другу особи A, B, C. Из них формируется новая особь C' = C + f(A - B), где f – параметр алгоритма. Из исходной особи и особи C' формируется особь новой популяции. Для этого каждый признак исходной особи с заданной вероятностью p заменяются на соответствующий признак C'. Выживает особь с лучшим значением целевой функции.

В данной работе предложен гибридный алгоритм, являющийся модификацией алгоритма ДЭ, в которой к особи с лучшим значением целевой функции применяется градиентный алгоритм, когда исчерпано время счета, отведенное на ДЭ. Кроме того, в гибридном алгоритме ДЭ применяется процедура адаптации штрафа, в которой учитывается возврат в допустимую область посредством масштабирования решения. Как показал вычислительный эксперимент, предложенная процедура адаптации штрафа приводит к сокращению погрешности получаемых решений.

Гибридный алгоритм ДЭ сравнивался с решателем BARON на всех задачах из гл. 2 и на пяти задачах из гл. 4 (см. таблицу 3) в тех же условиях, что описаны выше. Гибридный алгоритм ДЭ на всех примерах нашел допустимые решения, а решатель BARON – только в четырех примерах. На этих примерах результаты ДЭ отличались не более чем на 1% по целевой функции от решений BARON. С точки зрения практики радиосвязи КВ диапазона такое отклонение пренебрежимо мало. Как правило, время, потребовавшееся для нахождения рекордного значения с помощью ДЭ, отличалось незначительно от выбранного

Таблица 3 — Результаты градиентного подъема, гибридного алгоритма ДЭ и BARON, полученные для кольцевых решеток.

Тип	Град.	ДЭ	BARON		
ТИП	$ ilde{F}$	$ ilde{F}$	$ ilde{F}$	t, c	
ШВИК 8-15(2:3)	1536	1664	-	14.62	
ШВДК 8-20	1454	1454	1455	2.78	
ШВДК 8-30	2422	2422	2422	1.47	
СВДК 8-25	740	740	740	0.23	
СВДК 8-37	1487	1487	1487	0.23	

веременно́го ограничения. Из проведенных экспериментов можно сделать вывод о том, что разработанный гибридный вариант ДЭ показывает конкурентоспособные результаты в сравнении с коммерческим решателем BARON в режиме его настроек по умолчанию, при этом преимущество ДЭ наблюдается на задачах с наибольшей размерностью.

Четвертая глава посвящена исследованию возможности оптимизации возбуждения ФАР в различных условиях.

На практике использование высокосимметричных ФАР вызывает особый интерес, так как позволяет выполнить расчеты для одного направления и затем легко адаптировать их для других симметричных направлений. Другой особенностью, влияющей на результаты моделирования, является наличие потерь в земле [14]. Чтобы ослабить этот эффект, антенные системы с противовесами подняты над землей на 2 м.

В данной главе изучается, как изменяется общий коэффициент усиления кольцевой ФАР с ростом радиочастоты и плотности системы противовесов. Общий коэффициент усиления является суммой частичных коэффициентов усиления в двух ортогональных поляризациях. Плотность системы противовесов определяется числом продольных и поперечных проводов, относящихся к одному и тому же излучателю. Частота изменяется от 5 до 30 МГц. Вычисления производились на решетках ШВИ, состоящих из 8 излучателей. Для расчета матрицы сопротивлений и матрицы излучений использовался пакет моделирования антенных систем NEC2.

Для проведения вычислительного эксперимента использовался решатель BARON в пакете GAMS. Результаты оптимизации направленности решетки сравнивались с коэффициентом усиления одиночного излучателя, установлен-

ного в центре такой же системы противовесов. В качестве направления оптимизации выбирается 70° полярного угла и 45° азимутального угла в сферических координатах. Было выявлено, что при значениях частоты 5 и 30 МГц решетка оптимизируется малоэффективно. Также было обнаружено, что, в основном, увеличение плотности системы противовесов приводит к росту коэффициента усиления.

При исследовании изменения соотношения коэффициентов усиления ФАР и одиночного излучателя с ростом частоты было обнаружено, что на частоте 25МГц усиление ФАР существенно больше усиления одиночного излучателя. При более детальном исследовании этого эффекта было выявлено, что на частоте 25МГц (см Рис. 3) одиночный излучатель довольно мало излучает в направлении оптимизации, тогда как ФАР имеет максимум излучения в этом направлении. Было предположено, что такой эффект был получен вследствие учета взаимного влияния. Согласно (2), если пренебречь взаимным влиянием излучателей, плотность мощности F будет максимальна, когда поля будут синфазны. Для проверки гипотезы о необходимости учета взаимного влияния произведено сравнение диаграмм направленности решеток разных конфигураций после математической оптимизации их направленности в заданном направлении согласно модели (5) с соответствующими диаграммами одиночного излучателя и со случаем фазирования решетки без учета взаимного влияния.

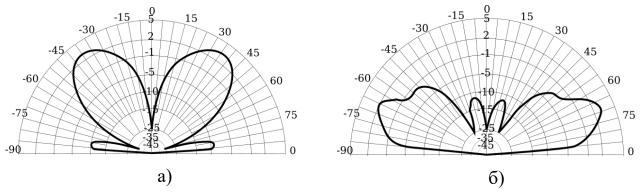


Рисунок 3 — Вертикальный план диаграммы направленности одиночного излучателя (а) и ФАР 5:7 (б) при 25МГц

Направление оптимизации по умолчанию было установлено на 70° полярного угла и 45° азимутального угла в сферических координатах. Для некоторых экспериментов было проведено дополнительное исследование при 85° полярного угла.

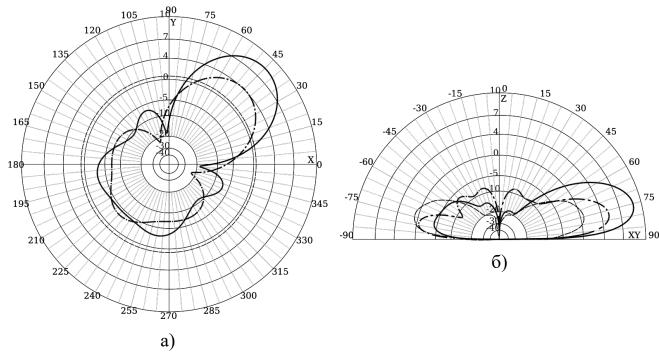


Рисунок 4 — Горизонтальный (а) и вертикальный (б) план диаграммы направленности ШВД при расстоянии от центра излучателя до центра решетки 20м. Пунктирной линией обозначено усиление одиночного излучателя, штрихпунктирной — фазирование решетки без учета взаимного влияния, сплошной — решение задачи мат. программирования.

Для ШВД производилось исследование диаграмм направленности при варьировании расстояния центров излучателей до центра решетки от 5 до 50 м. В большинстве случаев использование решения задачи математического программирования не давало существенного преимущества перед простым фазированием. Тем не менее, при расстоянии между центром излучателя и центром решетки равным 20м это различие составило около 4 дБ (см. Рис. 4).

Аналогичные результаты были получены и для решеток СВД. При оптимизации в направлении полярного угла, равном 70° , при варьировании расстояния от центра излучателя до центра решетки от 35 до 37 м различие между коэффициентом усиления решения задачи математического программирования и усилением простого фазирования также достигало 4 дБ. При оптимизации в направлении полярного, угла равном 85° , при варьировании расстояния от центра излучателя до центра решетки от 25 до 29 м эта разница достигала 5 дБ.

В заключении приведены основные результаты работы, которые заключаются в следующем:

1. В ходе вычислительного эксперимента показано, что задача оптимизации направленности фазированной антенной решетки имеет многочис-

- ленные локальные оптимумы, большое число из которых совпадают по целевой функции, однако не эквивалентны между собой относительно равного сдвига фаз во всех излучателях.
- 2. Установлено, что непрерывная подгруппа линейных симметрий для рассматриваемых задач оптимизации направленности фазированной антенной решетки одномерна и ее элементы соответствуют сдвигу фаз во всех излучателях на равную величину, что позволяет снизить размерность задачи на одну переменную и сократить время счета коммерческого решателя BARON.
- 3. Предложена модификация алгоритма дифференциальной эволюции в комбинации с градиентным алгоритмом, учитывающая специфику задачи оптимизации направленности фазированной антенной решетки и показавшая свою конкурентоспособность по сравнению с коммерческим решателем BARON с преимуществом на задачах большей размерности.
- 4. В результате вычислительного эксперимента по исследованию влияния расположения излучателей и используемой радиочастоты на эффективность работы алгоритмов оптимизации было обнаружено, что имеются конфигурации, при которых усиление ФАР существенно превосходит усиление одиночного излучателя.
- 5. Выявлены ситуации, в которых коэффициент усиления, соответствующий решению задачи квадратичной оптимизации, имеет существенное преимущество (до 5 дб) перед коэффициентом усиления, получаемым стандартным методом фазирования без учета взаимного влияния.

Глава 1. Задача оптимизации направленности фазированных антенных решеток

1.1 Основные понятия

Как и в работах [13; 14], здесь изучаются антенные решетки КВ диапазона, состоящие из широкополосных вертикальных излучателей (ШВИ), см. Рис. 1.1 а) и широкополосных вертикальных диполей (ШВД), см. Рис. 1.1 б). Кроме того, в рассмотрение включены решетки симметричных вертикальных диполей (СВД), см. Рис. 1.1 в) и решетки ШВИ кольцевой структуры, см. Рис. 1.1 г).

Каждый ШВИ состоит из 8 проводов, которые составляют "каплеобразный" вертикальный излучатель, обеспеченный системой противовесов. Система противовесов каждого излучателя состоит из 6 проводов, расположенных параллельно земле. ШВД спроектирован аналогично ШВИ с той разницей, что вместо системы противовесов подключен другой "каплеобразный" вертикальный излучатель, направленный в противоположную сторону. СВД являются диполями стандартной конфигурации, то есть представляют собой прямолинейный проводник, длина которого много больше его радиуса, питаемый от генератора посередине. Решетки ШВИ кольцевой структуры представляют собой несколько "каплеобразных" вертикальных излучателей, расположенных по кругу с некоторым фиксированным шагом. Система противовесов для такой решетки состоит из радиальных проводников, причем через каждый излучатель проходит один такой проводник. Кроме того, система противовесов состоит из поперечных проводников, соединяющих соседние излучали, а также параллельных ему проводников в данном секторе. В принципе, в рассмотрение могут быть включены излучатели, спроектированные любым другим образом, если для них предоставлены соответствующие входные данные задачи оптимизации ФАР. Здесь под входными данными понимаются матрицы компонент полей и матрицы проводимости, которые можно получить с помощью некоторой программы моделирования антенн.

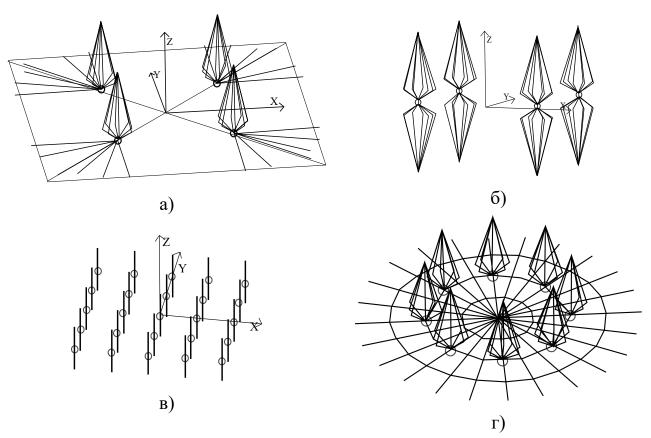


Рисунок 1.1 — ФАР различных конфигураций

1.2 Постановка задачи

Нашей задачей является максимизация излучения антенной решетки в заданном направлении при ограничениях на мощность, подводимую к каждому излучателю. В терминах комплексных токов, подводимых к излучателям, эта задача сформулирована в работах [13; 15]. Пусть l - индекс компоненты вектора направления: l=1 для азимутального и l=2 для полярного угла. Расстояние до приемника принимается во много раз превышающим размеры ФАР, поэтому индекс l итерирует только эти два значения. Суммарное электромагнитное поле $f_{\Sigma}^{(l)}$, выраженное в комплексных единицах, вводится как

$$f_{\Sigma}^{(l)} = \sum_{i=1}^{N} I_i \tilde{f}_i^{(l)}, \qquad (1.1)$$

где N - число точек питания антенной системы, I_i - комплексный ток в i-й точке питания; $\tilde{f}_i^{(l)}$ - парциальное поле, то есть поле, которое излучается при подаче единичного тока на i-ю точку питания излучающей системы, в то время как ток в других точках питания равен нулю. В качестве количественной меры оцен-

ки электромагнитного поля используется напряженность электрического поля. Отметим, что из определения парциального поля следует, что $\tilde{f}_i^{(l)}$ имеет размерность поля, нормированного к току. Справедливость выражения (1.1) следует из линейности уравнений Максвелла (более подробно см. [15]). Таким образом, суммарное поле $f_{\Sigma}^{(l)}$ является суперпозицией парциальных полей от каждой точки питания излучающей системы.

Значения $f_i^{(l)}$ и $f_{\Sigma}^{(l)}$ — функции направления и частоты, которые могут быть вычислены с помощью некоторой программы моделирования антенн (здесь мы используем NEC-2 [43]).

За \overline{f} обозначим комплексное сопряжение к f. Как было упомянуто выше, цель — максимизация направленности излучения. В качестве количественной меры оценки направленности излучения понимается плотность мощности поля в заданном направлении, обозначаемая через F. Через компоненты электромагнитного поля величина F выражается по формуле (1.2)

$$F = \sum_{l=1}^{2} \overline{f}_{\Sigma}^{(l)} f_{\Sigma}^{(l)}$$

$$\tag{1.2}$$

и является целевой функцией задачи. При максимизации F необходимо учитывать ограничения на активную мощность, которую способны выдавать усилители, питающие антенную систему. В силу закона Ома такие ограничения могут быть выражены в терминах только токов или только напряжений. Чтобы найти мощность i-го источника, вводятся соответствующие комплексные напряжения U_i следующим образом:

$$I_i = \sum_{j=1}^{N} y_{ij} U_j \,, \tag{1.3}$$

где y_{ij} – элементы матрицы проводимостей $\mathbf{Y}=(y_{ij})$, имеющей размерность $N\times N.$

В некоторых случаях более удобно использовать матричную нотацию. В рамках данной нотации мы вводим вектор-столбец токов ${\bf i}$ и вектор-столбец напряжений ${\bf u}$, состоящие из N элементов. Целевая функция в таком случае формулируется следующим образом:

$$F = \mathbf{u}^{+} \mathbf{A} \mathbf{u} \,, \tag{1.4}$$

где верхний индекс + означает эрмитово сопряжение, $A = (a_{ij})$,

$$a_{ij} = \sum_{l=1}^{2} \overline{f}_{i}^{(l)} f_{j}^{(l)}. \tag{1.5}$$

Соответственно, соотношение между токами и напряжениями записывается следующим образом:

$$\mathbf{i} = \mathbf{Y}\mathbf{u}.\tag{1.6}$$

Существуют различные формы ограничений, которые соответствуют различным антенным системам. Например, можно ограничить суммарную мощность P по всем точкам питания. В этом случае задача оптимизации формулируется так:

$$\begin{cases} \mathbf{u}^{+}\mathbf{A}\mathbf{u} \to \max, \\ \mathbf{u}^{+}\mathbf{B}\mathbf{u} = 1, \end{cases}$$
 (1.7)

где

$$\mathbf{B} = \frac{1}{4P}(\mathbf{Y} + \mathbf{Y}^+). \tag{1.8}$$

Такая задача может быть решена аналитически [15].

Задача усложняется, когда ограничение на мощность накладывается по каждой точке питания. В этом случае задача формулируется в виде:

$$\begin{cases} \mathbf{u}^{+}\mathbf{A}\mathbf{u} \to \max, \\ 0 \leqslant \mathbf{u}^{+}\mathbf{B}^{(1)}\mathbf{u} \leqslant 1, \\ \dots \\ 0 \leqslant \mathbf{u}^{+}\mathbf{B}^{(n)}\mathbf{u} \leqslant 1, \\ \mathbf{u} \in \mathbb{C}^{N}, \end{cases}$$
(1.9)

где $\mathbb C$ - поле комплексных чисел, n - число точек питания, на которые накладываются ограничения (в общем случае n может быть не равно N),

$$\mathbf{B}^{(k)} = \frac{1}{4P_{max}^{(k)}} (\mathbf{Y}^{+} \mathcal{P}^{(k)} + \mathcal{P}^{(k)} \mathbf{Y}), \qquad (1.10)$$

 $P_{max}^{(k)}$ - максимально допустимая мощность в k-й точке питания, $\mathcal{P}^{(k)}$ - матрицыпроекторы имеющие единственный ненулевой элемент $\mathcal{P}_{kk}^{(k)}=1$. Матрицыпроекторы имеют размерность $N\times N$.

Как показано в [15],

- 1. Все матрицы $\mathbf{B}^{(k)}$ имеют не больше чем два ненулевых собственных значения. Одно из собственных значений положительно, остальные отрицательные или нулевые.
- 2. Матрицы **A** и ${\bf B}^{(k)}$ эрмитово-самосопряженные, то есть $a_{ij}=\overline{a}_{ji}$ для всех $i=\overline{1,N}, j=\overline{1,N}.$
- 3. Матрица А положительно полуопределена.
- 4. Кроме того, из закона сохранения энергии, что матрица $\mathbf{B}_{\sum} := \sum_{k=1}^{n} \mathbf{B}^{(k)}$ положительно определена, так как суммарная активная мощность, поглощаемая пассивной цепью, не может быть отрицательной либо нулем, поскольку, часть энергии обязательно излучится [15].

1.3 Методы решения

В данной работе мы рассматриваем подход к решению задачи максимизации направленности излучения ФАР в заданном направлении при ограничениях, накладываемых на мощность, подаваемую на каждый из излучателей. Такая задача может быть решена только численными методами [15]. Для использования градиентного метода задача сводится к задаче безусловной оптимизации методом штрафных функций. Выбор градиентного алгоритма связан с тем, что отыскание даже локального оптимума в задаче невыпуклого квадратичного программирования может представлять собой NP-трудную задачу, и одним из методов, уместных в таких случаях, является градиентный алгоритм [40]. Согласно [4], использование метода сопряженных градиентов для решения данной задачи не будет приводить к существенным улучшениям по сравнению с простым градиентным подъемом. Данное утверждение нашло согласие с результатами предварительных вычислительных экспериментов, проведенных нами для некоторых из рассматриваемых задач.

Для оценки качества результатов градиентного алгоритма производится их сравнение с решениями, полученными с помощью решателя BARON в пакете GAMS. BARON использует алгоритм ветвей и границ, усиленные различными методами распространения ограничений и локального поиска для уменьшения диапазонов переменных в ходе работы алгоритма [50]. Его использование также представляет альтернативный подход к решению данной задачи, но, посколь-

ку BARON является коммерческим решателем, произведение расчетов требует приобретения лицензии, что не всегда приемлемо.

Вообще говоря, при использовании метода градиентного подъема не гарантируется получение глобального оптимума. Приблизиться к глобальному оптимуму позволяет многократный запуск алгоритма из случайным образом сгенерированных точек. Кроме того, многократный запуск позволяет оценить количество локальных оптимумов, что является некоторым критерием сложности индивидуальной задачи [1]. Анализ структуры локальных оптимумов позволяет также выявить наличие нетривиальных симметрий.

Еще одним эффективным подходом к решению невыпуклых задач квадратичного программирования являются эволюционные алгоритмы и, в частности, методы дифференциальной эволюции (ДЭ) [42; 53]. Использование методов ДЭ требует больше времени, чем использование градиентного подъема, однако в отличие от градиентных методов, не требует вычисления производных и не подвержен преждевременному завершению в точках стационарности. Таким образом, методы ДЭ также могут быть применены при исследовании структуры локальных оптимумов задачи невыпуклого квадратичного программирования.

1.4 Формулировка задачи в действительных числах

Для разработки алгоритма решения задачи удобно переформулировать ее в вещественных числах. Обозначим соответствующие матрицы: $\mathbf{G} \in \mathbb{R}^{(2N)^2}$ для целевой функции и $\mathbf{H}^{(k)} \in \mathbb{R}^{(2N)^2}$; $k = \overline{1,n}$ для ограничений. Пусть $\mathbf{y} \in \mathbb{C}^N$, $\mathbf{A} \in \mathbb{C}^{N^2}$, и пусть $\mathbf{x} \in \mathbb{R}^{2N}$ - вектор, где первые N компонент являются вещественными частями соответствующих компонент вектора \mathbf{y} , в то время как остальные компоненты соответствуют мнимым, то есть:

$$\mathbf{y}_i \in \mathbb{C} \longleftrightarrow (\mathbf{x}_i, \mathbf{x}_{N+i}), \ \mathbf{x}_i = Re(\mathbf{y}_i), \ \mathbf{x}_{N+i} = Im(\mathbf{y}_i) \ i = \overline{1,N}.$$

Через $\mathbf{G} \in \mathbb{R}^{(2N)^2}$ обозначим матрицу следующего вида:

$$\left(\begin{array}{c|c}
Re(\mathbf{A}) & -Im(\mathbf{A}) \\
\hline
Im(\mathbf{A}) & Re(\mathbf{A})
\end{array}\right).$$
(1.11)

Легко проверить, что

$$\begin{pmatrix} Re(\mathbf{A}\mathbf{y}) \\ Im(\mathbf{A}\mathbf{y}) \end{pmatrix} = \mathbf{G} \begin{pmatrix} Re(\mathbf{y}) \\ Im(\mathbf{y}) \end{pmatrix}. \tag{1.12}$$

Из того, что матрица $\bf A$ эрмитово-самосопряженная, следует, что матрица $\bf G$ симметричная. Действительно, так как матрица $\bf A$ эрмитово-самосопряжена, следует симметричность $Re(\bf A)$ и кососимметричность $Im(\bf A)$. Это значит, что

$$\mathbf{G}^{T} = \left(\frac{Re(\mathbf{A}) | (Im(\mathbf{A}))^{T}}{(-Im\mathbf{A})^{T} | Re(\mathbf{A})} \right) = \left(\frac{Re(\mathbf{A}) | -Im(\mathbf{A})}{Im(\mathbf{A}) | Re(\mathbf{A})} \right) = \mathbf{G}.$$

Таким образом, **G** является симметрической матрицей. То же самое применимо к матрицам ограничений $\mathbf{H}^{(k)} \in \mathbb{R}^{(2N)^2}; k = \overline{1,n}$. В вещественных числах задача (1.9) эквивалентна следующей:

$$\begin{cases} \mathbf{x}^{T}\mathbf{G}\mathbf{x} \to \max, \\ 0 \leqslant \mathbf{x}^{T}\mathbf{H}^{(1)}\mathbf{x} \leqslant 1, \\ \dots \\ 0 \leqslant \mathbf{x}^{T}\mathbf{H}^{(n)}\mathbf{x} \leqslant 1, \\ \mathbf{x} \in \mathbb{R}^{2N}. \end{cases}$$
(1.13)

Задача (1.13) имеет целевую функцию, заданную квадратичной формой с положительно полуопределенной матрицей ${\bf G}$. Каждое ограничение формулируется квадратичной формой, определенной симметричной матрицей ${\bf H}^{(k)}, k=\overline{1,n}$ с двумя парами идентичных собственных значений, два из которых положительны, а другие два отрицательны или равны нулю, все остальные собственные числа равны нулю.

Следует отметить, что задача (1.9), сформулированная в комплексных числах, имеет симметрию относительно преобразования $\mathbf{u} \to e^{\boldsymbol{j} \phi} \mathbf{u}$ всех комплексных координат (по произвольному углу ϕ). За \boldsymbol{j} здесь обозначена мнимая единица. В качестве доказательства рассмотрим некоторую квадратичную форму, определенную матрицей \mathbf{M} :

$$(\mathbf{v}e^{\mathbf{j}\varphi})^{+}\mathbf{M}(\mathbf{v}e^{\mathbf{j}\varphi}) = \sum_{l=1}^{N} \sum_{k=1}^{N} |v_{k}||v_{l}|m_{kl}e^{\mathbf{j}(\varphi_{l}+\varphi-\varphi_{k}-\varphi)} =$$

$$= \sum_{l=1}^{N} \sum_{k=1}^{N} |v_{k}||v_{l}|m_{kl}e^{\mathbf{j}(\varphi_{l}-\varphi_{k})}.$$

Отмеченная симметрия может найти применение для уменьшения размерности области поиска на единицу. Например, фиксируя $Im(y_N)=0$, что эквивалентно добавлению ограничения $x_{2N}=0$ к задаче (1.13).

Глобально-оптимальное решение задачи невыпуклого математического программирования вида (1.13) может быть найдено методом ветвей и границ [33; 56] или с использованием методов DC программирования [32; 54]. Локально-оптимальное решение задачи может быть найдено средствами градиентной оптимизации или методом Ньютона [30]. В случае большой размерности могут быть применены различные метаэвристики (см. [23; 53]).

1.5 Верхняя оценка нормы допустимых решений

В вычислительных экспериментах бывает полезно ограничить множество допустимых решений задачи шаром или параллелепипедом, так как это позволяет более обоснованно выбрать начальное решение для итерационных методов с мультистартом или сократить перебор в методе ветвей и границ.

Кроме того, можно оценить множество допустимых решений в терминах евклидова расстояния до начала координат. Отметим, что если \mathbf{x} удовлетворяет всем ограничениям задачи (1.13), то

$$\min\{\mathbf{z}^T\mathbf{H}_{\sum}\mathbf{z}\ :\ \mathbf{z}\in\mathbb{R}^{2N},\ ||\mathbf{z}||=1\}=\lambda_{\min},$$

(см. например [31], глава 1, § 1.0.2), мы получаем

$$\mathbf{x}^T \mathbf{H}_{\sum} \mathbf{x} \geqslant ||\mathbf{x}||^2 \lambda_{\min}$$

И

$$||\mathbf{x}|| \leqslant \sqrt{\frac{N}{\lambda_{\min}}}.\tag{1.14}$$

1.6 Масштабирование произвольного решения в допустимую область

Для рассматриваемой задачи существует преобразование, позволяющее привести к допустимой области решение \mathbf{x} , которое нарушает только ограничивающие неравенства задачи (1.13) вида $\mathbf{x}^T \mathbf{H}^{(k)} \mathbf{x} \leqslant 1$:

$$\mathbf{x}' := \alpha(\mathbf{x})^{-1/2}\mathbf{x},\tag{1.15}$$

где $\alpha(\mathbf{x}) := \max_{k=\overline{1,n}} \mathbf{x}^T \mathbf{H}^{(k)} \mathbf{x}$. Поскольку как целевая функция, так и ограничения представлены квадратичными формами, применение такой операции приведет к пропорциональному уменьшению в $\alpha(\mathbf{x})$ раз значений каждой из квадратичных форм. Другими словами, если в некоторой точке \mathbf{x} значения каждой из квадратичных форм, задающих ограничения, больше 0, причем значения некоторых из них больше 1, то по формуле (3.4) можно определить множитель, умножение которого на вектор \mathbf{x} ведет к тому, что наибольшее из значений квадратичных форм, задающих ограничения, будет равно 1. Данная процедура применяется для выбора начального решения, а также для масштабирования итогового решения.

Результаты данного раздела были представлены в [65; 60; 66].

Глава 2. Структурные свойства задачи оптимизации направленности фазированных антенных решеток

2.1 Постановка вычислительного эксперимента

Процедура решения задачи оптимизации ФАР при ограничении мощности по каждой точке питания состоит в следующем:

- 1. Для каждого излучателя в решетке рассчитать парциальные компоненты полей $f_i^{(l)}, i=\overline{1,N}, l=\overline{1,2}.$
- 2. Вычислить матрицы **G** and $\mathbf{H}^{(k)}$, $k = \overline{1,n}$, из подраздела 1.4.
- 3. Оценить радиус допустимой области, используя формулы из подраздела 1.5.
- 4. Решить задачу (1.13) с дополнительными ограничениями $x_N = 0, ||\mathbf{x}|| \leqslant \sqrt{\frac{N}{\lambda_{\min}}}.$

Данный подход может гарантировать нахождение как локального, так и глобального оптимума в зависимости от решателя, используемого на шаге 4. Как один из базовых оптимизационных методов, мы рассматриваем метод градиентной оптимизации (максимизационный вариант) с алгоритмом одномерного поиска Дэвиса, Свенна и Кэмпи (ДСК) [30]. Далее целевая функция задачи (1.13) будет обозначаться символом \tilde{F} .

В нашей работе от задачи условной оптимизации мы переходим к задаче безусловной оптимизации методом штрафных функций, а именно – методом внешней точки [2; 16]:

$$\mathbf{x}^{T}\mathbf{G}\mathbf{x} - r \cdot \sum_{k=1}^{n} \left(\min\left(0, \mathbf{x}^{T}\mathbf{H}^{(k)}\mathbf{x}\right) + \min\left(0, 1 - \mathbf{x}^{T}\mathbf{H}^{(k)}\mathbf{x}\right) \right)^{4} \to \max, \quad (2.1)$$

где r — достаточно большой штрафной параметр. Глобально-оптимальное решение для задачи (2.1) может не быть допустимым для изначальной задачи (1.13), но увеличение штрафного параметра r уменьшает нарушение ограничений. Кроме того, имея решение \mathbf{x} , которое нарушает в задаче (1.13) только неравенства вида $\mathbf{x}^T\mathbf{H}^{(k)}\mathbf{x}\leqslant 1$, мы будем ссылаться на результаты градиентной оптимизации с использованием восстановления допустимости (3.4) после срабатывания критерия остановки. Алгоритм градиентной оптимизации повторяется многократно, при этом используется случайно сгенерированный вектор $\mathbf{x}\in\mathbb{R}^{2N}$

в качестве стартовой точки. Распределение случайной величины х описано в подразделе 2.1.2. Для каждого найденного решения выполняется проверка на удовлетворение необходимым условиям локальной оптимальности путем решения задачи (2.2). Затем решение линеаризованной задачи, удовлетворяющее необходимым условиям локальной оптимальности, снова подается на вход алгоритма градиентной оптимизации, остальные решения отсеиваются. Последний шаг применяется, поскольку решение задачи (2.2) может оказаться за пределами допустимой области задачи (1.13). В этом случае данный этап показывает, как далеко решение линеаризованной задачи находится от решения, найденного градиентным алгоритмом. Детальное описание данной процедуры приводится в приложении А.

Для организации вычислительных экспериментов был разработан программный комплекс «Ехрі» (см. приложение Б), зарегистрированный в государственном реестре программ для ЭВМ [63].

С целью отыскания глобального оптимума задачи (1.13) посредством решателя BARON [56], основанного на методе ветвей и границ с использованием локальной оптимизации для поиска начального приближения, необходимо предоставить ограничивающий параллелепипед или верхнюю оценку евклидовой нормы допустимых решений. Для этого может быть использовано неравенство (1.14).

2.1.1 Тестовые примеры

Вычислительный эксперимент был поставлен для задач, построенных на основе четырех типов ФАР: широкополосных вертикальных излучателей, широкополосных вертикальных диполей и симметричных вертикальных диполей. При моделировании полей был использован пакет NEC2, для которого были предоставлены соответствующие геометрические конфигурации антенных систем. В качестве рабочей частоты было выбрано 5МГц. Рассмотрены квадратные ФАР конфигурации 2х2, 3х3 и 5х5. Заранее отметим, что конфигурация 5х5 была рассмотрена только для решеток СВД, поскольку NEC2 не смог обработать 5х5 ШВИ и 5х5 ШВД из-за высокой сложности этих моделей. В случае с ФАР

кольцевой структуры были рассмотрены решетки, состоящие из 8 и 16 излучателей.

Решетки ШВИ смоделированы расположенными на высоте 0.2 метра над поверхностью земли (проводимость земли равна 0.01 См/м, относительная диэлектрическая проницаемость 10). Решетки ШВИ и СВД размещены в свободном пространстве. В случае ШВЕ и ШВД, расстояние между соседними излучателями равно 20 метров. Высота каждого излучателя ШВИ равна 15 метров. Расстояние между концами каждого излучателя ШВД равно 30 метров. В случае СВД были рассмотрены два типа излучателя: с длинами излучателя 10 и 30 метров и расстояниями между соседними излучателями 5 и 10 метров соответственно. СВД с длиной излучателя равной 10 метрам в исследовании помечены штрихом (СВД'). Система противовесов ФАР кольцевой структуры поднята над землей на 2м для того, чтобы ослабить влияние потерь в земле. Расстояние между соседними излучателями в этих ФАР равно 8м. В качестве направления максимизации излучения выбраны: азимутальный угол 45°, полярный угол 70°.

2.1.2 Результаты вычислительного эксперимента

В этом разделе мы сравниваем результаты работы градиентного метода и решателя BARON в его режиме по умолчанию. Во всех экспериментах, описанных ниже, было установлено ограничение по времени 1000с. Все эксперименты проводились на ЭВМ с процессором Intel i7 (тактовая частота: $2.8\Gamma\Gamma\mu$), ОЗУ: $16\Gamma\delta$. В случае сходимости градиентного метода (завершение по минимально допустимому приращению целевой функции 10^{-4}) алгоритм перезапускается заново до истечения запаса времени.

Для каждой задачи была применена процедура получения верхней оценки нормы допустимых решений (с.м. подраздел 1.5). При выполнении этой процедуры для многих задач получались близкие к нулю (или даже нулевые) собственные числа, что делало невозможным их дальнейшее использование для оценки нормы $\sqrt{\frac{N}{\lambda_{\min}}}$. В таблице 4 такие оценки задачи отмечены прочерком в соответствующем столбце. Так как из физических соображений собственные числа должны быть строго больше 0, проблемы с вычислением верхней оценки нормы

допустимых решений свидетельствуют о допущенной погрешности при вычислении матриц, определяющих квадратичные формы задачи (1.13). В частности, одной из таких проблем является несимметричный вид вещественных матриц. В таком случае их следует привести к симметричному ввиду путем усреднения симметричных относительно главной диагонали компонент.

Во время каждой инициализации градиентного метода стартовая точка х выбирается независимо с равномерным распределением в кубе $[-5000, 5000]^{2N}$. Такой выбор оказался достаточным для всех задач, кроме СВД 2х2, чтобы получить решение, по целевой функции соответствующее решению, предоставляемому решателем BARON. Лучшее из найденных таким образом решений принимается за конечный результат. Параметр штрафа r в методе градиентной оптимизации установлен равным 10^6 на всех запусках. Такое значение было определено эмпирически. В таблице 4 приводятся результаты вычислительного эксперимента. Значения целевой функции " \tilde{F} " в точке, полученной алгоритмом градиентного подъема, приводятся после процедуры масштабирования (3.4). Для решателя BARON версии 18.5.8 было выбрано то же самое ограничение сверху на процессорное время, что и для градиентного метода (группа колонок "BARON"), и 50000с для проверки глобальной оптимальности. Во всех таблицах колонка "t" содержит время до получения лучшего найденного решения или до установления глобальной оптимальности. Во всех запусках градиентного метода были получены решения, где активными оказались все ограничения вида $\mathbf{x}^T \mathbf{H}^{(k)} \mathbf{x} \leq 1.$

Из таблицы 4 видно, что на всех видах решеток, кроме решеток СВД конфигураций 3х3 и 5х5, а также СВД' конфигураций 2х2 и 3х3, разница в значениях целевой функции не превосходит 1%. Для решеток СВД конфигураций 3х3 и 5х5, а также СВД' конфигураций 2х2 и 3х3 градиентный алгоритм существенно уступает по качеству найденного решения. Более детальное исследование для СВД' конфигураций 2х2 и 3х3 показало, что ВАRON предоставляет решение с очень малой областью притяжения. Суть такого исследования заключалась в том, что к решению, полученному с помощью решателя ВАRON, добавлялось некоторое возмущение, после чего модифицированная точка подавалась на вход градиентного алгоритма. Очень малые возмущения (до 0.5% относительно нормы решения) исходной точки не мешали градиентному алгоритму найти точку, лежащую в окрестности решения, найденного с помощью решателя ВАRON. Однако принимая на вход возмущенное порядка 0.5% относительно

Таблица 4 — Результаты оптимизации, полученные с помощью градиентного подъема и коммерческого решателя

Тип	$\sqrt{rac{N}{\lambda_{\min}}}$	Гра	ц.	BARON		
1 ин		$ ilde{F}$	t, c	\tilde{F}	t, c	
ШВИ 2х2	13.6	138.2	0.054	139.2	0.12	
ШВИ 3х3	22.5	575.7	0.93	580.6	0.34	
ШВД 2х2	21	459.7	0.13	463.6	0.27	
ШВД 3х3	82.2	915	24.4	925	0.34	
СВД 2х2	44.7	357	1.9	361	0.16	
СВД 3х3	641.9	1138	25.6	1261	0.38	
СВД 5х5	$1.1 \cdot 10^5$	5318	1000	6716	1000	
СВД' 2х2	$2.3 \cdot 10^4$	233	2.52	253	0.25	
СВД' 3х3	$6 \cdot 10^{5}$	664	71	1153	1.48	
СВД' 5х5	_	1382.7	1000	33.5	217.94	
Кольц. 8	87	217	8.06	218	0.23	
Кольц. 16	154	727	90.9	734	1.37	

нормы решение решателя BARON, градиентный подъем приводил к решению со значением целевой функции $\tilde{F}=233$ в случае СВД' 2х2. При этом, используемая нами процедура проверки локальной оптимальности не дала опровержения локальной оптимальности решения со значением целевой функции $\tilde{F}=253$, предоставленного решателем BARON. Аналогичные результаты были получены как для СВД, так и для СВД' конфигурации 3х3.

Особое внимание привлекают решетки СВД и СВД' конфигурации 5x5, поскольку за предоставленный временной промежуток градиентный подъем так и не достиг критерия остановки. BARON в случае СВД' 5x5 за это же время достиг решения, значительно хуже по целевой функции. Вероятно, как BARON, так и градиентный подъем сошлись бы к более качественному решению, если бы не были ограничены по времени.

Кроме решеток ШВИ и ШВД конфигурации 2х2, BARON демонстрирует лучшее время счета. Однако следует отметить, что для обоих алгоритмов время, затраченное на поиск решения, было либо существенно меньше, либо сравнимо со временем, затраченным на построение исходных данных пакетом моделирования NEC, что делает оба подхода равноценными по времени работы с практической точки зрения.

Важным результатом, не приведенным в таблице 4, является то, что для ФАР конфигураций ШВИ 2х2, ШВД 2х2 и ШВИ 3х3 была доказана глобальная оптимальность найденного решателем BARON решения.

В качестве иллюстрации физических свойств полученных решений на рис. 2.3 приведен горизонтальный план диаграммы направленности ФАР для решений, найденных с помощью метода градиентной оптимизации. Под диаграммой направленности понимается графическое представление зависимости коэффициента усиления антенны от ее направления в заданной плоскости. Такая диаграмма позволяет наглядно оценить, на какое направление приходится максимум излучения, и провести качественную оценку работы алгоритма. На рис. 2.3 изображена диаграмма направленности для решетки ШВИ размера 2х2 (пунктирная линия) и ШВИ 3х3 (сплошная линия). Для решений, полученных с помощью решателя BARON для этих задач, диаграммы аналогичны. Еще раз отметим, что при эксперименте направление оптимизации было представлено углами в полярных координатах: азимутальный угол был принят равным 45° , полярный угол - 70° . Как видно из горизонтального плана диаграммы направленности при значении полярного угла 70°, максимальному излучению соответствует направление оптимизации 45°. Сравнение диаграмм показывает, что использование решеток с большим числом излучателей позволяет уменьшить излучение в других направлениях.

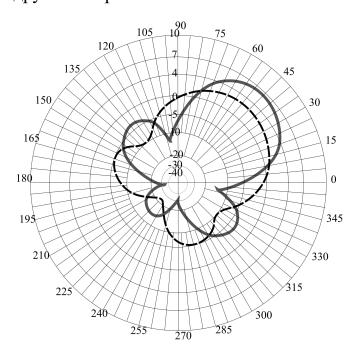


Рисунок 2.1 — Горизонтальный план диаграммы направленности для решетки ШВИ 2х2 (пунктир) и ШВИ 3х3 (сплошная)

2.2 Количество локальных оптимумов и их расположение

Таблица 3	5 — Оценки	числа локал	іьных	оптимумов.

ФАР	M	M_{ne}	M_f	\mathcal{B}_{M_f}	\mathcal{L}_{M_f}	$M_{y\approx 0}$	$\mathcal{B}_{M_{ypprox 0}}$	$\mathcal{L}_{M_{ypprox 0}}$
ШВИ 2х2	18368	4	1	1	1	4	4	4
ШВД 2х2	7678	4	1	1	1	4	4	4
СВД 2х2	523	1	1	1	1	1	1	1
СВД 3х3	39	9	2	2	2	5	5	5
СВД' 2х2	396	370	3	3	3	338	1000	1213
СВД' 3х3	14	14	3	3	3	1	1	1
ШВИ 3х3	1070	3	1	1	1	3	3	3
ШВД 3х3	41	4	4	4	4	1	1	1
Кольц. 8	124	9	2	2	2	9	9	9
Кольц. 16	11	6	1	1	1	6	6	6

Для оценки общего числа локальных оптимумов использовался метод переписи Шнабеля. Данный метод имеет применение в экологии и заключается в выводе статистических оценок численности популяции на основе числа особей, помеченных в результате эксперимента, из популяции с неизменным составом, где каждая особь имеет константную вероятность отлова. В [1] предлагается адаптация такого метода для оценки числа локальных оптимумов.

В таблице 5 приводится статистика по числу различных точек остановки (в пределах заданной точности) процедуры мультистарта в течение 1000с процессорного времени. Для каждого решения была применена процедура линеаризации задачи и проверки необходимых условий локальной оптимальности, описанная в разделе (2.3). Приемлемыми считались отличия целевой функции линеаризованной задачи от значения целевой функции, найденного градиентным методом, менее чем на 1%. Здесь M — число выполненных запусков за отведенное время, M_{ne} — число групп решений, отличающихся не более чем на 10% по каждой из координат, M_f — число групп значений целевой функции у таких неэквивалентных решений (с точностью до 10%, приведенных в таблице 4). $M_{y\approx 0}$ — число групп решений, для которых были выполнены необходимые условия локальной оптимальности (см. § 2.3 ниже). \mathcal{B} и \mathcal{L} — оценка нижней границы

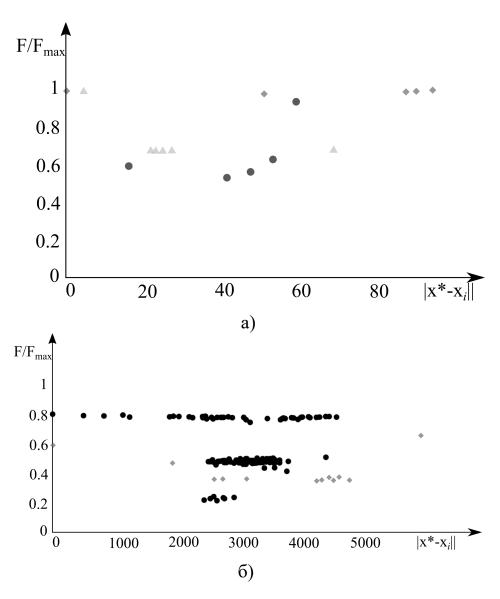


Рисунок 2.2 — Структура множества найденных решений. В случае а) точками обозначены результаты для кольцевых решеток, состоящих из 8 излучателей, ромбами — для кольцевых решеток, состоящих из 16 излучателей, треугольниками - для СВД 3х3. В случае б) точками обозначены результаты для СВД' 2х2, ромбами — для СВД' 3х3

и оценка максимального правдоподобия числа локальных оптимумов, рассчитанные по методу переписи Шнабеля. Доверительная вероятность для данного метода была выбрана равной 95%. Оценки для числа решений с различными значениями целевой функции обозначены \mathcal{B}_{M_f} и \mathcal{L}_{M_f} . Оценки для числа решений, для которых были выполнены необходимые условия локальной оптимальности, обозначены $\mathcal{B}_{M_{y\approx 0}}$ и $\mathcal{L}_{M_{y\approx 0}}$. В случае СВД и СВД' конфигурации 5х5 в течение 1000 с градиентный метод не достиг решения, удовлетворяющего условию остановки, поэтому данный результат не включен в таблицу 5.

Как видно из таблицы, во всех экспериментах в некоторых запусках были найдены неразличимые с практической точки зрения решения. Для квадратных решеток ШВИ и ШВД было найдено по одному такому решению. Решетки кольцевой структуры и СВД' 2х2 имеют значительное разнообразие как по найденным векторам решений, так и по значениям целевой функции. Относительно решений, для которых были выполнены необходимые условия локальной оптимальности, можно сказать, что, с большой вероятностью, для задачи СВД' 2х2 были найдены далеко не все возможные решения. О решетке СВД' 3х3 известно, что градиентный подъем был остановлен в точке, не лежащей в окрестности решения, предоставляемого решателем ВАRON.

На рис. 2.2 приведены диаграммы локальных оптимумов, где по оси ординат отложены значения целевой функции, а по оси абсцисс - расстояние до лучшего известного решения. Диаграмма показывает, что значения, соответствующие одному и тому же значению целевой функции, могут находиться достаточно далеко друг от друга, что позволяет сделать предположение о наличии неучтенных симметрий задачи (о множестве линейных симметрий задачи см. в [25]).

2.3 Проверка необходимых условий локальной оптимальности

Как уже было отмечено, нахождение даже локального оптимума в случае решения задачи невыпуклого квадратичного программирования, вообще говоря, является NP-трудным. В связи с этим применительно к градиентному подъему можно ожидать ситуаций, в которых при поиске локального оптимума потребуется чрезмерно большое число итераций или произойдет преждевременная

остановка вдалеке от локального оптимума. Из этого следует, что имеет смысл предусмотреть процедуру, позволяющую определить случаи, когда полученное решение не является локальным оптимумом. Для этого была применена процедура проверки необходимых условий локальной оптимальности [40]. Суть данной проверки в том, что мы линеаризуем задачу вблизи точки остановки градиентного алгоритма. Для этого в окрестности решения \mathbf{x}_0 вводим малое приращение \mathbf{y} . При этом каждая квадратичная форма, представленная симметричной матрицей \mathbf{M} , преобразуется следующим образом:

$$\mathbf{x}^T \mathbf{M} \mathbf{x} = \mathbf{x}_0^T \mathbf{M} \mathbf{x}_0 + \mathbf{x}_0^T \mathbf{M} \mathbf{y} + \mathbf{y}^T \mathbf{M} \mathbf{x}_0 + \mathbf{y}^T \mathbf{M} \mathbf{y}.$$

Учитывая симметричность каждой квадратичной формы и пренебрегая квадратичными по у слагаемыми, получаем для задачи (1.13):

$$\begin{cases} \mathbf{x}_{0}^{T}\mathbf{G}\mathbf{x}_{0} + 2\mathbf{x}_{0}^{T}\mathbf{G}\mathbf{y} \to \max, \\ 0 \leqslant \mathbf{x}_{0}^{T}\mathbf{H}^{(1)}\mathbf{x}_{0} + 2\mathbf{x}_{0}^{T}\mathbf{H}^{(1)}\mathbf{y} \leqslant 1, \\ \dots \\ 0 \leqslant \mathbf{x}_{0}^{T}\mathbf{H}^{(n)}\mathbf{x}_{0} + 2\mathbf{x}_{0}^{T}\mathbf{H}^{(n)}\mathbf{y} \leqslant 1, \\ \mathbf{y} \in \mathbb{R}^{2N}. \end{cases}$$

$$(2.2)$$

В случае локальной оптимальности решения \mathbf{x}_0 модуль $|\mathbf{y}^T\mathbf{G}\mathbf{y}|$ должен быть равен нулю.

Следует отметить, что решение задачи (2.2) не подтверждает локальную оптимальность, а лишь предоставляет вспомогательную процедуру, благодаря которой из всего множества решений, найденных в результате многократного запуска из случайно сгенерированной точки градиентного подъема, можно исключить решения, заведомо не являющиеся локальными оптимумами. Такие решения могут быть получены в результате преждевременного завершения работы градиентного метода по точности, если значения целевой функции слабо меняются за итерацию алгоритма или текущее решение оказалось в стационарной точке, не являющейся локальным оптимумом (последнее случается крайне редко).

2.4 Экспериментальная проверка устойчивости решений

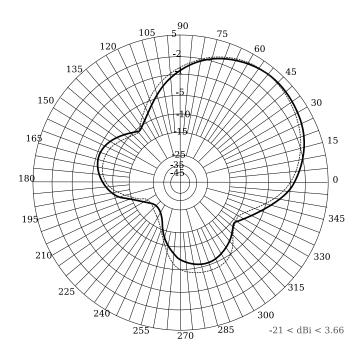


Рисунок 2.3 — Диаграммы направленности для ШВИ 2x2 при оптимизации в направлении 70:45 (сплошная линия) и 70:50 (пунктир)

При анализе структуры локальных оптимумов может возникнуть вопрос об устойчивости решения по аргументу. В данной работе было проведено исследование изменения значения целевой функции при изменении оптимизируемого направления на малый угол. В рассмотрение принималось также изменение значения целевой функции при подстановке в исходную задачу решения, найденного для нового направления (для удобства вывода результата такая подстановка обозначена Р1), и наоборот — при подстановке в задачу для измененного направления решения, полученного для исходного направления (обозначается Р2). Исследование проводилось на квадратных решетках, состоящих из 4-х и 9-и излучателей. Азимутальный и полярный угол менялись на 5°. Результаты приведены в таблице 6

Результаты исследования показывают, что изменение направления оптимизации на малый угол соответствует повороту исходной диаграммы направленности на этот угол.

ФАР	Подстановка	70:45	75:45	65:45	70:50	75:40	65:50
	-		125	138	137	137	125
ШВИ 2х2	P1	138	138	138	137	137	137
	P2		125	138	136	136	123
	-		532	565	574	533	564
ШВИ 3х3	P1	575	574	572	560	558	557
	P2		530	562	559	517	546
	-		518	454	454	512	389
ШВД 2х2	P1	459	458	459	457	456	389
	P2		518	392	452	510	386
	-		1817	872	1015	1196	1198
ШВД 3х3	P1	1501	1506	1047	1000	1004	1448
	P2		1774	1203	1450	1713	1162
	-		417	315	365	412	312
СВД 2х2	P1	369	368	369	367	366	367
	P2		417	315	363	410	310
	-		1789	1176	1459	1162	1753
СВД 3х3	P1	1484	1475	1472	1446	1428	1444
	P2		1782	1164	1427	1120	1713

Таблица 6 — Значения целевой функции при изменении оптимизируемого направления на малый угол.

2.5 Исследование симметрий задачи

Для полноты изложения в разделах 2.5.1 и 2.5.2 приводятся элементы теории из [25].

2.5.1 Общие положения

Решение и исследование задач математического программирования могут быть упрощены при наличии симметрий этих задач, соответствующих некоторым линейным преобразованиям. В частности, знание таких симметрий может

быть использовано для уменьшения размерности задачи, ограничения пространства поиска или получения нового локального оптимума из имеющегося. Эти методы применимы в случае непрерывной области решений [20; 28; 35], а также в целочисленном программировании [7; 11; 18; 34; 39] и частично целочисленном программировании [37; 44]. Хотя в большинстве случаев применение симметрий направлено на ускорение работы алгоритмов точной оптимизации, в некоторых случаях знание симметрий может оказаться полезным и при разработке и анализе эвристик, в частности, эволюционных алгоритмов [22; 47].

В настоящей работе исследуется случай непрерывной области решений. В то время как предыдущие исследования симметрии в математическом программировании, как правило, имели дело с перестановками координат пространства решений [34; 35; 37], в данной работе рассматривается большая группа обратимых линейных преобразований. Мы изучаем частный случай задачи квадратичного программирования с квадратичными ограничениями в \mathbb{R}^N : целевая функция и ограничения задаются квадратичными формами \mathbf{G} , и $\mathbf{H}_1, \ldots, \mathbf{H}_n$, в виде (1.13). Следует еще раз отметить, что все матрицы \mathbf{G} , и $\mathbf{H}_1, \ldots, \mathbf{H}_n$, симметричны и $\mathbf{H}_{\Sigma} = \sum_{i=1}^n \mathbf{H}_i$ положительно определена. Без потери общности будем считать, что все ограничения заданы неравенствами \leq . Известная задача о максимальном разрезе (которая является NP-трудной) также может быть сведена к задаче квадратичного программирования с такими свойствами [51].

Под симметрией задачи (1.13) подразумевается набор линейных преобразований

$$\mathbf{x} \to \mathbf{y} = \mathbf{P}\mathbf{x} \,, \tag{2.3}$$

определенный невырожденной матрицей P, такой что задача (1.13), выраженная в терминах преобразованного пространства (т.е, через вектор-столбец y), совпадает с исходной задачей. Таким образом, в терминах вектора y задача (1.13) формулируется в той же форме:

$$\begin{cases} \mathbf{y}^{T}\mathbf{G}\,\mathbf{y} \to \max, \\ \mathbf{y}^{T}\mathbf{H}_{1}\mathbf{y} \leqslant 1, \\ \dots \\ \mathbf{y}^{T}\mathbf{H}_{n}\mathbf{y} \leqslant 1, \end{cases}$$
 (2.4)

c тем же набором матриц $\{\mathbf{H}_i: i=1,\ldots,n\}$. Подчеркнем, что поскольку перестановка ограничений не меняет задачи, матрицы \mathbf{H}_i также могут быть пронумерованы произвольно.

Преобразования, заданные матрицами \mathbf{P} , составляют группу обратимых линейных симметрий, которую мы обозначаем через \mathcal{G} . Нахождение хотя бы подгруппы в \mathcal{G} , также может иметь смысл для практических целей, если полученные симметрии позволяют упростить оптимизационную задачу.

В некоторых случаях также может потребоваться найти группу симметрии только набора ограничений. Обозначим эту группу через \mathcal{G}' . Очевидно, это мало чем отличается от поиска группы симметрии ${\mathcal G}$ задачи; нужно просто исключить из рассмотрения матрицу G (формально можно считать, что ${f G}$ в этом случае нулевая матрица). Обратите внимание, что ${\cal G}$ является подгруппой в \mathcal{G}' . Кроме того, набор симметрий ограничений тесно связан, но не обязательно идентичен набору тех обратимых линейных преобразований, которые биективно отображают область допустимости задачи $\mathcal{D} := \{\mathbf{x} \in \mathbb{R}^N :$ ${\bf x}^T B_i {\bf x} \le 1, i = 1, ..., M$ на себя. Группа симметрии множества ограничений \mathcal{G}' может быть подгруппой в группе симметрии обратимых линейных преобразований области \mathcal{D} . Это происходит, например, если имеется несколько "неактивных" ограничений, каждое из которых определяет такое множество точек, внутри которого содержится \mathcal{D} . Тогда требование, чтобы набор матриц этих "неактивных" ограничений оставался в (2.4), является избыточным относительно группы преобразований области \mathcal{D} . В качестве простого примера рассмотрим случай n = N+1, $\mathbf{G} = diag(1,\ldots,1)$, $\mathbf{H}_1 = diag(1,0,0,\ldots,0),\ldots,\mathbf{H}_N =$ $diag(0,0,\ldots,0,1), \mathbf{H}_{N+1} = diag(1,\ldots,1).$ Ясно, что здесь $\mathbf{H}_1,\ldots,\mathbf{H}_N$ определяют "неактивные" ограничения, группа обратимых линейных преобразований области $\mathcal D$ состоит из всех ортогональных преобразований в $\mathbb R^N$, а группа $\mathcal G$ конечная группа линейных симметрий N-мерного гиперкуба.

Авторы [28] объединяют последнее определение симметрии области допустимости с инвариантностью целевой функции для изучения геометрических, алгебраических и вычислительных свойств, подразумеваемых такими (дискретными) симметриями в полуопределенных программах. В этом случае с помощью симметрий получается эквивалентная задача выпуклой оптимизации с меньшим числом переменных и тем же оптимальным решением.

В [37] группа формулировок задачи математической оптимизации была определена как множество перестановок индексов переменных, для которых целевая функция и ограничения остаются неизменными. Ясно, что эта группа является подгруппой в \mathcal{G} . На основе подхода из [37], в [35] был разработан алгоритм обнаружения симметрии для задач квадратичного программирования. Этот

алгоритм можно использовать для нахождения группы формулировок в нашем случае, однако мы стремимся найти всю группу \mathcal{G} , если это возможно.

Обозначим множество матриц $\mathbf{H}_1, \dots, \mathbf{H}_n$ через \mathcal{H} .

Определение 1. *Н называется* конгруэнтным инвариантом (или просто инвариантом, для краткости) относительно преобразования

$$\mathbf{H} \to \mathbf{P}^T \mathbf{H} \, \mathbf{P} \tag{2.5}$$

c невырожденной матрицей P, если $\{P^T \mathbf{H} P : \mathbf{H} \in \mathcal{H}\} = \{\mathcal{H}\}.$

Множество всех матриц P, для которых множество является инвариантом, образует группу. Здесь эта группа называется группа симметрий множества матриц и обозначается $\mathcal{G}_{\mathcal{H}}$. Ясно, что относительно преобразования $\mathbf{H} \to \mathbf{P}^T \mathbf{H} \mathbf{P}$ некоторые матрицы из \mathcal{H} могут сводится к другим, однако не все возможные комбинации могут быть получены этим способом.

Заметим, что одним из инвариантов преобразования (2.5) является инерция матрицы \mathbf{H} , определяется как упорядоченная тройка: (i) количество положительных собственных значений \mathbf{H} , (ii) количество отрицательных собственных значений \mathbf{H} и (iii) количество нулевых собственных значений \mathbf{H} (см., например, [31], § 4.5). Таким образом, можно переставлять только матрицы с одинаковой инерцией, а все множество \mathcal{H} разбивается на классы эквивалентности матриц с одинаковой инерцией. Это отражено в следующем определении.

Определение 2. І-класс является максимальным по включению подмножеством *H*, состоящим из матриц с равной инерцией.

Предполагается, что все І-классы $\mathcal H$ пронумерованы целым числом k и обозначены $\mathcal H_k^I.$ Обозначим

$$\mathcal{H} = \bigcup_{k} \mathcal{H}_{k}^{I}. \tag{2.6}$$

Кроме того, сумма *всех* матриц, принадлежащих некоторому І-классу, является инвариантом любого преобразования (2.5) из $\mathcal{G}_{\mathcal{H}}$

Заметим, что это не все инвариантные суммы, поскольку любая сумма нескольких классов инерции также является инвариантом. Таким образом, по множеству \mathcal{H} можно явно построить набор матриц, инвариантных относительно всех преобразований (2.5), перебирая все комбинации І-классов и суммируя их элементы.

Определение 3. Любая матрица, являющаяся суммой всех матриц, принадлежащих одному или нескольким *I-классам*, называется матрицей инвариантности *I-типа*.

В [25] показано, что можно упростить анализ группы $\mathcal{G}_{\mathcal{B}}$, если хотя бы одна из матриц инвариантности І-типа положительно определена, так как в этом случае мы сможем использовать известные факты о группе ортогональных преобразований O(N) (см., например, [57]).

Можно сказать, что

Условие I выполняется, если по меньшей мере одна инвариантная матрица H^I I-типа положительно определена.

Следует обратить внимание, что симметричная матрица **H** может быть представлена как конгруэнтное преобразование диагональной матрицы:

$$\mathbf{H} = \mathbf{S}^T \mathbf{D} \mathbf{S} \,, \tag{2.7}$$

где \mathbf{D} — диагональная матрица, которая может иметь только "0", "1", или "-1" на ее главной диагонали. Матрица \mathbf{S} Может быть получена конструктивно, например, конечным методом Лагранжа ([36], Γ . 5).

В тех случаях, когда **H** положительно определена, матрица **D** будет являться единичной матрицей и может быть опущена в (2.7).

Утверждение 1. [25] Если условие I выполняется, тогда группа $\mathcal{G}_{\mathcal{H}}$ является изоморфизмом некоторой подгруппы группы ортогональных преобразований, и этот изоморфизм определяется отображением

$$P \rightarrow SPS^{-1},$$
 (2.8)

где матрица S такова, что $\mathbf{H}^{I} = \mathbf{S}^{T}\mathbf{S}$.

Инвариантность задачи (1.13) относительно преобразования **P** подразумевает, что

$$\mathbf{P}^{T}\mathbf{G}\mathbf{P} = \mathbf{G}, \qquad \mathbf{P}^{T}\mathbf{H}_{i}\mathbf{P} = \sum_{j=1}^{n} \mathbf{L}_{ij}\mathbf{P}_{j}, \ i = 1, \dots, n,$$
 (2.9)

где \mathbf{L}_{ij} – элементы матрицы перестановок, т.е. матрица $\mathbf{L}=(\mathbf{L}_{ij})$ имеет одну единицу в каждом столбце и в каждой строке, остальные элементы \mathbf{L} равны нулю.

Утверждение 1 может быть применено для анализа симметрий задачи (1.13), если известны некоторые матрицы инвариантности І-типа \mathbf{H}^I для множества матриц $\mathcal{H} = \{\mathbf{H}_1, \dots, \mathbf{H}_n\}$, подразумевая, что

$$\mathbf{P}^T \mathbf{H}^I \mathbf{P} = \mathbf{H}^I, \tag{2.10}$$

и \mathbf{H}^I положительно определена.

В задаче оптимизации направленности ФАР матрица $\mathbf{H}_{\Sigma} := \sum_i \mathbf{H}_i$ положительно определена. Если выполняется (2.9), тогда $\mathbf{H}^I = \mathbf{H}_{\Sigma}$ является матрицей инвариантности І-типа для множества матриц $\mathcal{H} = \{\mathbf{H}_1, \dots, \mathbf{H}_n\}$.

Естественно, в общем случае инвариантность матрицы \mathbf{H}^I не обязательно подразумевает выполнение (2.9), но по крайней мере можно говорить, что группа \mathcal{G}' является подгруппой $\mathcal{G}_{\mathcal{B}}$, которая в свою очередь является подгруппой в O(N) по утверждению 1. Следовательно, \mathcal{G} также является подгруппой O(N).

За \mathbf{Q} обозначим ортогональное преобразование вида (2.11).

$$\mathbf{Q} := \mathbf{SPS}^{-1} \tag{2.11}$$

В дальнейшем всегда будем предполагать, что существует положительно определенная инвариантная матрица \mathbf{H}^I І-типа для множества матриц $\mathcal{H} = \{\mathbf{H}_1, \dots, \mathbf{H}_n\}$, т.е. условие І выполнено, и \mathbf{Q} всегда будет обозначать образ \mathbf{P} при изоморфизме (2.8).

Поскольку $\mathbf{P} = S^{-1}\mathbf{Q}\mathbf{S}$ по определению \mathbf{Q} , применение (2.9) дает

$$(\mathbf{S}^{-1}\mathbf{Q}\mathbf{S})^{T}\mathbf{G}(S^{-1}\mathbf{Q}\mathbf{S}) = \mathbf{G},$$

$$(\mathbf{S}^{-1}\mathbf{Q}\mathbf{S})^{T}\mathbf{H}_{i}(\mathbf{S}^{-1}\mathbf{Q}\mathbf{S}) = \sum_{j=1}^{n} \mathbf{L}_{ij}\mathbf{H}_{j}, \ i = 1, \dots, n,$$

$$(2.12)$$

и после простого преобразования получается

$$\mathbf{Q}^T \tilde{\mathbf{G}} \mathbf{Q} = \tilde{\mathbf{G}}, \quad \mathbf{Q}^T \tilde{\mathbf{H}}_i \mathbf{Q} = \sum_{i=1}^N \mathbf{L}_{ij} \tilde{\mathbf{H}}_j, \ i = 1, \dots, n,$$
 (2.13)

где

$$\tilde{\mathbf{G}} = (\mathbf{S}^{-1})^T \mathbf{G} \mathbf{S}^{-1}, \qquad \tilde{\mathbf{H}}_i = (\mathbf{S}^{-1})^T \mathbf{H}_i \mathbf{S}^{-1}, \ i = 1, \dots, n.$$
 (2.14)

Таким образом, используя изоморфизм (2.11), можно заменить уравнения (2.9) аналогичными уравнениями (2.13), но с заменой матриц

$$\mathbf{G} \to \tilde{\mathbf{G}}, \qquad \mathbf{H}_i \to \tilde{\mathbf{H}}_i, \ i = 1, \dots, n.$$
 (2.15)

и заменив \mathbf{P} ортогональной матрицей \mathbf{Q} . Эти уравнения значительно проще, так как в этом случае условие (2.13) можно сформулировать линейно по \mathbf{Q} :

$$\tilde{\mathbf{G}}Q = Q\tilde{\mathbf{G}}, \quad \tilde{\mathbf{H}}_i Q = Q \sum_{j=1}^n \mathbf{L}_{ij} \tilde{\mathbf{H}}_j, \ i = 1, \dots, n.$$
 (2.16)

Если найти все подходящие ортогональные отображения \mathbf{Q} , то будет легко восстановить соответствующие матрицы \mathbf{P} . В дальнейшем группу таких подходящих матриц \mathbf{Q} мы также будем обозначать через \mathcal{G} , поскольку матрицы \mathbf{P} и \mathbf{Q} просто дают разные точные представления одной и той же абстрактной группы.

Из стандартных фактов теории топологических групп (см., например, [57], Г. 1) вытекают следующие свойства группы симметрии \mathcal{G} , наделенной стандартной топологией \mathbb{R}^{N^2} , применительно к пространству $(N \times N)$ -матриц. Как всякая топологическая группа, \mathcal{G} состоит из компонент связности (в топологическом смысле), только одна из которых, далее обозначаемая как \mathcal{G}_1 , содержит единичный элемент. Эта \mathcal{G}_1 является подгруппой инвариантности группы \mathcal{G} , см. теорему 1 в [57] и в дальнейшем называется непрерывной подгруппой симметрий. Остальные компоненты связности (не являющиеся подгруппами) можно рассматривать как произведения элементов группы вне \mathcal{G}_1 на элементы группы \mathcal{G}_1 , т.е. смежные классы группы \mathcal{G}_1 . Эти смежные классы можно идентифицировать, указав одного (любого) представителя смежного класса.

2.5.2 Нахождение непрерывной подгруппы симметрий

Рассмотрим более подробно случай непрерывной подгруппы симметрий \mathcal{G}_1 . Нетривиальные перестановки матриц $\tilde{\mathbf{H}}_i$, если они все разные, не могут быть результатом преобразований, принадлежащих \mathcal{G}_1 , так как невозможно непрерывно двигаться от тождественного преобразования (из чего следует, что матрицы $\tilde{\mathbf{H}}_i$ не переставляются) к любому преобразованию \mathbf{Q} , дающему нетривиальную перестановку матриц $\tilde{\mathbf{H}}_i$. Заметим, что любая такая \mathbf{Q} имеет окрестность преобразований, не дающих тривиальной перестановки матриц $\tilde{\mathbf{H}}_i$. Поэтому, условие инвариантности (2.16) подразумевает коммутативность:

$$\tilde{\mathbf{G}}\mathbf{Q} = \mathbf{Q}\tilde{\mathbf{G}}, \qquad \tilde{\mathbf{H}}_i\mathbf{Q} = \mathbf{Q}\tilde{\mathbf{H}}_i, \ i = 1, \dots, n.$$
 (2.17)

Следующее утверждение является "фольклорным" фактом матричного анализа (доказательство можно найти в [25]):

Утверждение 2. Любая матрица $Q \in SO(N)$ может быть представлена как матричная экспоненциальная функция кососимметричной матрицы. Верно и обратное: экспоненциальная функция любой кососимметричной матрицы является ортогональной матрицей.

Итак, с некоторой кососимметричной матрицей **X** имеем $\mathbf{Q} = e^{\mathbf{X}}$. Набор кососимметрических матриц **X** составляет алгебру Ли, соответствующую этой группе Ли [57]. Алгебра Ли, соответствующая SO(N), обычно обозначается so(N). Любая алгебра Ли также является линейным пространством, любой ее элемент может быть выражен с помощью базисных элементов, называемых образующими. Таким образом, любой элемент алгебры Ли можно представить в виде:

$$\mathbf{X} = \sum_{n} a_n G_n \,, \tag{2.18}$$

где a_n являются вещественными числами, G_n являются генераторами. Пространство кососимметричных матриц имеет размерность N(N-1)/2, а количество коэффициентов a_n будет равно количеству генераторов. В качестве генераторов можно выбрать матрицы, у которых над главной диагональю все элементы равны 0, кроме одного элемента, равного 1. Тогда кососимметрия однозначно определяет остальные матричные элементы этих генераторов. Итак, любой элемент Q из SO(N) можно представить в виде:

$$\mathbf{Q} = e^{\sum_n a_n G_n} \,. \tag{2.19}$$

Поскольку искомая непрерывная подгруппа симметрии \mathcal{G}_1 является подгруппой в SO(N), то для нее также справедливо представление (2.19), но, вообще говоря, параметры a_n теперь не являются независимыми. Таким образом, поиск этой подгруппы по существу сводится к нахождению ограничений на параметры a_n .

Для выполнения условий коммутативности (2.17) достаточно выполнения следующих условий:

$$\begin{cases}
\tilde{\mathbf{H}}_{i} \left(\sum_{n} a_{n} G_{n} \right) = \left(\sum_{n} a_{n} G_{n} \right) \tilde{\mathbf{H}}_{i}, \\
\tilde{\mathbf{G}} \left(\sum_{n} a_{n} G_{n} \right) = \left(\sum_{n} a_{n} G_{n} \right) \tilde{\mathbf{G}}.
\end{cases} (2.20)$$

При поиске непрерывной подгруппы симметрии (2.17) можно заменить на (2.20) – см. [25].

Уравнения (2.20) представляют собой систему линейных алгебраических уравнений, определяющих параметры a_n . Эта система однородна, поэтому она имеет континуум ненулевых решений или одно тривиальное решение. Тривиальное нулевое решение всегда присутствует и соответствует единичной матрице \mathbf{Q} . Некоторые из параметров a_n остаются "свободными" (это будут параметры искомой подгруппы), а остальные из a_n могут быть линейно выражены через "свободные". Решение этой системы уравнений (2.20) может быть получено конструктивно методом Гаусса.

Условие инвариантности задачи относительно преобразования ${f Q}$ превращается в

$$\mathbf{Q} = e^{\sum_{n} a_n \hat{G}_n} \,, \tag{2.21}$$

где сумма идет по "свободным" параметрам a_n , а новые генераторы, обозначаемые через \hat{G}_n , являются линейными комбинациями прежних генераторов G_n . Множество всех **Q**-матриц, удовлетворяющих (2.21), параметризуется конечным набором вещественных параметров a_n . Заметим, однако, что этот набор матриц не обязательно изоморфен евклидову пространству, поскольку одному и тому же **Q** может соответствовать более одного набора параметров a_n .

2.5.3 Вычислительный эксперимент

Вычислительный эксперимент состоит из следующих этапов:

- 1. Обработка. На этом этапе возможная неточность данных нивелируется усреднением симметричных компонент матриц (матрицы **G** и **H** должны быть симметричны).
- 2. Преобразование $\mathbf{H}_{\Sigma} = \sum_{i} \mathbf{H}_{i}$ к канонической форме, используя метод Лагранжа для вычисления матриц \mathbf{S} и \mathbf{S}^{-1} .
- 3. Применение метода Гаусса к системе линейных уравнений (2.20) для вычисления генераторов \hat{G}_n .

Следует отметить, что входные данные могут содержать некоторые погрешности, которые приводят к несимметричности матриц G и H, что может существенно повлиять на поиск непрерывных групп симметрий. Таким образом, на этапе 1 используются известные свойства задачи, чтобы нивелировать влияние погрешности. Также в методе Гаусса на шаге 3 любые значения принимаются за 0, если их абсолютное значение меньше определенного порогового значения Δ , которое является параметром алгоритма. Причина в том, что последовательное исключение переменных из уравнений, выполняемое методом Лагранжа с представлением вещественных чисел с плавающей запятой, не может гарантировать абсолютную точность. В результате некоторые линейно зависимые строки матрицы не могут быть исключены, что может привести к неверному результату. Большое значение порога Δ может привести к вырожденности задачи, тогда как слишком малое значение Δ не позволит выявить линейные зависимости.

При вычислениях Δ рассматривалось от 10^{-4} до 10^{-12} . В данном диапазоне ни для одного примера задачи не было получено различий в полученных решениях.

Описанная процедура нахождения непрерывных групп симметрий применяется к примерам, описанным в разделе 2.1.1. Для всех рассмотренных задач было выявлено только наличие фазовой симметрии. Возможно, множественность решений объясняется наличием дискретных или аффинных симметрий. Выявление этих симметрий является предметом дальнейших исследований.

В качестве примера приводятся результаты для ШВИ 2х2.

В результате работы алгоритма было выявлено, что все генераторы могут быть выражены через один новый генератор вида

$$G = \begin{pmatrix} 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & -1 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \end{pmatrix},$$

который соответствует фазовой симметрии. Для данного генератора при a=1

$$e^{aG} = \begin{pmatrix} 0.5403 & 0 & 0 & 0 & -0.8415 & 0 & 0 & 0 \\ 0 & 0.5403 & 0 & 0 & 0 & -0.8415 & 0 & 0 \\ 0 & 0 & 0.5403 & 0 & 0 & 0 & -0.8415 & 0 \\ 0 & 0 & 0 & 0.5403 & 0 & 0 & 0 & -0.8415 \\ 0.8415 & 0 & 0 & 0 & 0.5403 & 0 & 0 & 0 \\ 0 & 0.8415 & 0 & 0 & 0 & 0.5403 & 0 & 0 \\ 0 & 0 & 0.8415 & 0 & 0 & 0 & 0.5403 & 0 \\ 0 & 0 & 0.8415 & 0 & 0 & 0 & 0.5403 & 0 \\ 0 & 0 & 0.8415 & 0 & 0 & 0 & 0.5403 \end{pmatrix}.$$

2.5.4 Учет симметрии при использовании решателя BARON

С целью изучения возможности ускорения работы решателей за счет учета специфики задачи были проведены дополнительные исследования структуры рассматриваемых примеров с точки зрения линейных симметрий этих задач. Ранее было отмечено (см. § 2.5.3), что решения рассматриваемой задачи эквивалентны с точностью до сдвига фаз во всех излучателях на равную величину. Учет данной симметрии (для краткости называемой «фазовой симметрией») может быть реализован фиксацией в ноль одной из переменных задачи, например, $x_1 = 0$. В результате добавления такого ограничения к условиям задачи число переменных сокращается на единицу и можно предположить, что это сократит время вычислений для известных алгоритмов. В данной работе были

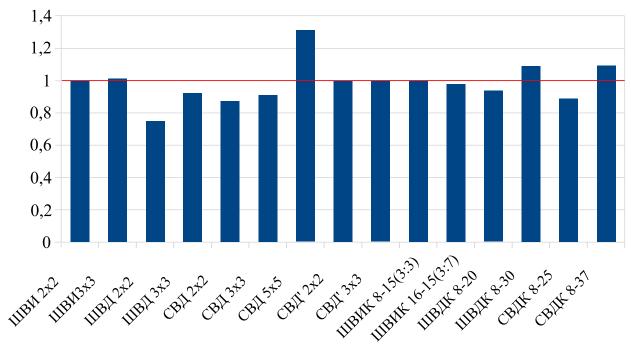


Рисунок 2.4 — Отношение длительности вычислений с фиксацией первой координаты к исходной длительности вычислений

поставлены вопросы о том, действительно ли происходит сокращение времени вычислений и о существовании других семейств симметрий, которые могли бы еще более сократить пространство поиска решаемой задачи.

Для ответа на этот вопрос на всех тестовых примерах был найден коэффициент ускорения решателя BARON, получаемый от фиксации $x_1=0$. Результаты представлены на рисунке 2.4 (здесь отсутствует задача СВД' 5х5, где алгоритм с фиксацией затратил существенно большее время, но при этом нашел решение с большим на 10% значением целевой функции, а также задача ШВИК 8-15(2:3), в которой решения не были найдены в обоих случаях). В большинстве примеров фиксация переменной привела к ускорению работы алгоритма, среднее ускорение по представленным здесь задачам составило 0.95, что говорит о целесообразности фиксации в ноль одной из переменных при использовании решателя. Аналогичный эксперимент с алгоритмом ДЭ и решателем ANTIGONE не показал существенного улучшения качества решений или их ускорения в результате фиксации x_1 .

Результаты данного раздела были представлены в [59—61].

Глава 3. Алгоритм дифференциальной эволюции для задачи оптимизации фазированных антенных решеток

3.1 Базовый вариант алгоритма

Эволюционные алгоритмы (ЭА) — один из наиболее широко используемых методов решения многоэкстремальных задач оптимизации, применяемый во многих областях информатики, экономики, инженерии и др. Дифференциальная эволюция (ДЭ) [53] — один из наиболее эффективных ЭА непрерывной оптимизации. В частности, ДЭ была признана стратегией-победителем нескольких конкурсов по оптимизации [21]. Подобно другим эволюционным алгоритмам, ДЭ вдохновлен естественным процессом эволюции и включает в себя применение мутаций, рекомбинации и селекции. Основная особенность ДЭ заключается в том, что в этом алгоритме при построении особей-потомков учитываются разницы между векторами, присутствующими в популяции. В этом смысле он похож на алгоритм Нелдера-Мида [41] и метод CRS из [46].

ДЭ — рандомизированный алгоритм, основанный на популяционном поиске, в котором на каждой итерации вычисляется новый набор пробных решений (векторов). В базовом варианте ДЭ для каждого члена популяции (их называют целевыми векторами) создается новый мутантный вектор. Затем мутантный вектор комбинируют с целевым вектором для создания пробного вектора. Наконец, применяется фаза селекции для выбора особей следующей популяции. Таким образом, итерации ДЭ продолжаются, пока не будет достигнут критерий остановки. В поколении G i-й вектор популяции обозначается как $\mathbf{X}_{i,G} = [x_{1,i,G}, x_{2,i,G}, ..., x_{D,i,G}]$. Ниже приведены более подробные сведения о каждой фазе ДЭ.

Эксперименты показывают [45], что в целом эволюция популяции такова, что в случае попадания популяции в некоторый «овраг», популяция ориентируется вдоль этого оврага и математическое ожидание разности двух случайных векторов оказывается направленным вдоль оврага. Это обеспечивает движение популяции вдоль узких оврагов, тогда как для многих градиентных методов в аналогичных условиях характерна колебательная динамика «от стенки к стенке». Приведенные эвристические соображения иллюстрируют наиболее важную

и привлекательную особенность алгоритма ДЭ – способность динамически адаптироваться к особенностям рельефа оптимизируемой функции.

Инициализация. ДЭ обычно начинает процесс оптимизации со случайно инициированной популяции, состоящей из λ векторов. Поскольку информация о перспективности различных областей пространства решений, как правило, отсутствует, для инициализации ДЭ применяются равномерные генераторы случайных векторов в параллелепипеде с некоторыми границами a_i , b_i по каждой координате j, т.е. j-я компонента i-го вектора инициализируется как $x_{j,i,0} = a_j + rand_{i,j}(b_j - a_j)$, где величина $rand_{i,j}$ выбрана с равномерным распределением между 0 и 1.

Мутация. Для каждого целевого вектора создается мутантный вектор. В настоящее время известно несколько вариантов этого оператора. В классическом варианте ДЭ применяется стратегия rand/1. В этом случае мутантный вектор $\mathbf{V}_{i,G}$ создается следующим образом:

$$\mathbf{V}_{i,G} = \mathbf{X}_{r_1,G} + F \cdot (\mathbf{X}_{r_2,G} - \mathbf{X}_{r_3,G}), \ r_1 \neq r_2 \neq r_3,$$
(3.1)

где r_1, r_2, r_3 — попарно различные целые числа, случайно выбранные из множества $\{1,...,\lambda\}\setminus i$. Разница между векторами масштабируется множителем F, который называется *силой мутации* и обычно определяется в интервале [0.4, 1].

Рекомбинация. Для объединения информации о различных пробных решениях и с целью увеличения разнообразия в популяции применяется оператор кроссинговера (рекомбинации). Каждый целевой вектор $\mathbf{X}_{i,G}$ рекомбинируется с соответствующим ему мутантным вектором $\mathbf{V}_{i,G}$ для создания пробного решения $\mathbf{U}_{i,G} = [u_{1,i,G}, u_{2,i,G}, ..., u_{D,i,G}]$. Наиболее типичный вариант кроссинговера в ДЭ действует следующим образом:

$$u_{j,i,G} = \begin{cases} v_{j,i,G}, & \text{если } rand_{i,j} \leqslant CR \text{ или } j = j_{rand} \\ x_{j,i,G} & \text{иначе}, \end{cases}$$
 (3.2)

где $rand_{i,j}$ — равномерно на [0,1] распределенное случайное число, j_{rand} — случайно выбранный индекс. При этом гарантируется, что $\mathbf{U}_{i,G}$ наследует хотя бы одну компоненту от $\mathbf{V}_{i,G}$. Параметр $CR \in [0,1]$ называется интенсивностью кроссинговера.

Селекция. Наконец, выполняется отбор для определения следующего поколения. Каждый пробный вектор сравнивается с соответствующим ему целевым вектором, и выживает лучший из них:

$$\mathbf{X}_{i,G+1} = egin{cases} \mathbf{U}_{i,G}, & \text{если } \tilde{F}(\mathbf{U}_{i,G}) \leqslant \tilde{F}(\mathbf{X}_{i,G}) \\ \mathbf{X}_{i,G} & \text{иначе.} \end{cases}$$
 (3.3)

Таким образом, каждый член популяции либо становится лучше по целевой функции, либо остается с тем же значением целевой функции в следующем поколении.

3.2 Гибридный вариант алгоритма дифференциальной эволюции

Будучи примененным к различным примерам из гл. 2, описанный выше базовый вариант алгоритма дифференциальной эволюции зачастую не мог обнаружить даже допустимых решений за все отведенное ему время. Чтобы избежать этой тенденции, в данной работе предложен гибридный вариант ДЭ с использованием градиентного метода, масштабированием решений в допустимую область и адаптацией штрафа, учитывающий специфику решаемой задачи. К особи с лучшим значением целевой функции в гибридном алгоритме применяется градиентный алгоритм, когда исчерпано время счета, отведенное на ДЭ.

Комбинация ДЭ с градиентным подъемом реализуется следующей процедурой, выполняемой перед переходом к следующему поколению G+1:

Пусть G_0 – номер поколения, когда было последнее улучшение рекорда, $\operatorname{Grad}(X)$ –

результат применения градиентного подъема с начальным решением X, X_G – лучшая особь популяции на итерации G.

Если G > D и $G > 2G_0$, то положить

 $X' := Grad(X_G)$.

 $\mathit{Ecлu}\; X' = X_G, \mathit{mo}\;$ завершить выполнение алгоритма, выдать решение $X_G.$ Иначе положить

$$X_G := X',$$

 $G_0 := G$.

Условие $G>2G_0$ показывает отсутствие улучшения рекордного значения целевой функции за то же число итераций, которое было затрачено на получение этого рекорда. Условие G>D гарантирует, что на начальных итерациях ДЭ не будет принято решение о запуске градиентного алгоритма [17; 29]. Здесь и далее под улучшением рекордного значения понимается увеличение лучшего найденного значения целевой функции в очередном поколении G не менее, чем на ε , где параметр ε тот же, что и в критерии остановки градиентного алгоритма (по минимальному допустимому приращению целевой функции) [60].

Масштабирование решений. Для рассматриваемой задачи существует преобразование, позволяющее привести к допустимой области любое решение \mathbf{x} , которое нарушает только неравенства задачи (1.13) вида $\mathbf{x}^T \mathbf{H}^{(k)} \mathbf{x} \le 1$:

$$\mathbf{x}' := \alpha(\mathbf{x})^{-1/2}\mathbf{x},\tag{3.4}$$

где $\alpha(\mathbf{x}) := \max_{k=\overline{1,n}} \mathbf{x}^T \mathbf{H}^{(k)} \mathbf{x}$. Поскольку как целевая функция, так и ограничения представлены квадратичными формами, применение такой операции приведет к пропорциональному уменьшению в $\alpha(\mathbf{x})$ раз значений каждой из квадратичных форм. Данная процедура применяется для выбора начального решения, а также для масштабирования каждого нового решения перед оценкой его качества в алгоритме ДЭ и после завершения градиентного подъема. При этом, если решение до масштабирования имело большие нарушения ограничений, то после масштабирования его целевая функция существенно изменяется (как правило, в сторону снижения качества). На этом принципе основано адаптивное правило подбора штрафного коэффициента r, описываемое далее.

Пусть G — номер текущей итерации, G_0 — номер итерации, на которой было последнее улучшение рекорда, G_1 — номер итерации, на которой произошло предыдущее увеличение штрафа, r — текущее значение штрафного коэффициента.

$$E$$
сли $G > \lambda$ и $G > 1.5G_0$ и $G > 2G_1$, то положить $r := 2r$ $G_1 := G$.

Таким образом, при отсутствии существенных улучшений качества решений на протяжении $G_0/2$ итераций, еще до вызова градиентного алгоритма и до

окончания работы ДЭ делается попытка улучшить найденный результат за счет увеличения штрафа. Условие $G > \lambda$ гарантирует, что на начальных итерациях не будет принято решение об увеличении штрафа. Условие $G > 2G_1$ вводится для того, чтобы штрафной коэффициент не увеличивался слишком часто. С учетом масштабирования особей в допустимую область, описанный механизм увеличения штрафа, как правило, приводит к выживанию особей с меньшим нарушением ограничений и позволяет улучшить качество получаемых решений. Как отмечено далее в п. 3.3, предложенная процедура адаптации штрафа приводит к сокращению погрешности получаемых решений.

3.3 Вычислительный эксперимент

Вычислительный эксперимент был поставлен для задач, рассмотренных в гл. 2 и 4. В данной статье ШВИК, ШВДК, СВДК обозначают решетки кольцевой структуры. Далее следует указание количества элементов (8 или 16). Через тире – расстояние (метры) от центра излучателя до центра решетки (15, 20, 25, 30, 37). Для ШВД приводится плотность противовесов (например, 3:3). Поскольку современные ЭВМ на аппаратном уровне поддерживают вычисление в параллельном режиме, рассматриваемый здесь алгоритм ДЭ был адаптирован под эту особенность: за один запуск алгоритма производится 4 параллельных выполнения, а на выход подается лучшее решение. Это позволяет использовать возможности современных ЭВМ для получения более качественных решений. В таблице 7 результаты, полученные с помощью градиентного подъема из [60] и гибридного алгоритма дифференциальной эволюции (ДЭ), сравниваются с результатами коммерческого решателя BARON версии 18.11.12 из пакета GAMS. Все сравниваемые алгоритмы имеют ограничение по времени счета 1000с (эта длительность выбрана из практических соображений, т.к. она сопоставима с временем построения исходных данных с использованием системы NEC2 и совпадает с ограничением по времени, выбранным в [60]). В случае нескольких запусков ДЭ за отведенное время за окончательное решение принимается лучшее из найденных за 1000с. Для оценки среднего значения целевой функции на выходе ДЭ производилась серия из 10 независимых испытаний по 1000с в каждом. Эксперимент с гибридным алгоритмом ДЭ проводился при выборе типичных значений настраиваемых параметров (популяция из 100 особей, F=0.6, CR=0.6). Значения целевой функции в таблице округлены до целых. Полужирным шрифтом выделены случаи, когда указанное значение целевой функции не менее чем на 1% выше, чем у других алгоритмов. Вычисления производились на ЭВМ с процессором Intel i7 (тактовая частота: $2.8\Gamma\Gamma$ ц), ОЗУ: 16Γ 6. Как правило, время, потребовавшееся для нахождения рекордного значения с помощью ДЭ, отличалось незначительно от выбранного веременного ограничения.

Таблица 7 — Результаты градиентного подъема, гибридного алгоритма ДЭ и BARON

Тип	град. подъем	ДЭ	ДЭ BARO	
I MII	$ ilde{F}$	\tilde{F}	\tilde{F}	t, c
ШВИ 2х2	138	139	139	0.12
ШВИ 3х3	576	580	580	0.34
ШВД 2х2	460	463	463	0.27
ШВД 3х3	915	924	925	0.34
СВД 2х2	357	361	361	0.16
СВД 3х3	1138	1163	1261	0.38
СВД 5х5	5318	7132	6716	1000
СВД' 2х2	233	198	253	0.25
СВД' 3х3	664	834	1153	1.4
СВД' 5х5	1382	2755	33	217.94
ШВИК 8-15(3:3)	217	218	218	0.23
ШВИК 16-15(3:7)	727	732	734	1.37
ШВИК 8-15(2:3)	1536	1664	_	14.62
ШВДК 8-20	1454	1454	1455	2.78
ШВДК 8-30	2422	2422	2422	1.47
СВДК 8-25	740	740	740	0.23
СВДК 8-37	1487	1487	1487	0.23

При увеличении числа испытаний до 20 на всех задачах, кроме СВД 3х3, СВД' 2х2, СВД' 3х3 и ШВИК 16-15(3:7), гибридный алгоритм в 100% испытаний находил решение, не отличающееся от лучшего известного более чем на 1% по целевой функции. На примере ШВИК 16-15(3:7) частота получения указанного в таблице решения составлила 0.95. В соответствии с подходом из [27] на каждой задаче тестирование гибридного алгоритма может рассматриваться как

последовательность из 20 испытаний по схеме Бернулли, где успехом считается получение решения, отличающееся от лучшего известного решения не более чем на 1% по целевой функции. Для указанной схемы Бернулли известны оценки доверительного интервала вероятности успеха p^* , которые являются асимптотически точными, когда число испытаний стремится к бесконечности [58]. При конечном числе испытаний с использованием утверждения 1 из [1] для случая биномиального распределения может быть найден односторонний доверительный интервал для вероятности успеха p^* : при доверительном уровне 95% вероятность нахождения лучшего известного решения для любой из рассмотренных задач, кроме СВД 3х3, СВД' 2х2, СВД' 3х3 и ШВИК 16-15(3:7), составляет не менее 0.861, а для задачи ШВИК 16-15(3:7) эта вероятность составляет не менее 0.784. Для оставшихся трех задач содержательной нижней оценки для p^* не получено.

Испытания на всех указанных выше задачах производились и с решателем ANTIGONE версии 39.1.0 в пакете GAMS. В режиме по умолчанию данный решатель на всех задачах выдал в качестве решения нулевой вектор, кроме СВД 2х2, где решение по целевой функции совпадало с результатом BARON.

Также в результате проведенных экспериментов было обнаружено, что динамическая адаптация штрафного коэффициента позволяет ДЭ достичь более качественных решений. В частности, сравнение результатов гибридного ДЭ при адаптации штрафа с результатами предварительных экспериментов с гибридным ДЭ, проведенных до реализации процедуры адаптации штрафа (при прочих равных условиях), показывают, что на всех примерах, кроме СВД'3х3, результаты предварительных экспериментов уступали по качеству решений.

Из проведенных экспериментов можно сделать следующие выводы:

1) разработанный в рамках данной работы гибридный вариант ДЭ показывает конкурентоспособные результаты по сравнению с коммерческим решателем ВАRON в режиме его настроек по умолчанию, при этом преимущество ДЭ наблюдается на задачах с наибольшей размерностью (50 и 16 переменных);

2) решатель ANTIGONE в режиме его настроек по умолчанию в большинстве тестовых примеров давал нулевое решение;

3.4 Заключение

В рамках данной работы был разработан гибридный вариант алгоритма и дифференциальной эволюции с использованием градиентного алгоритма и адаптацией штрафа. Показано, что разработанный вариант ДЭ демонстрирует конкурентоспособные результаты, в особенности на задачах большой размерности.

Результаты данного раздела были представлены в [59; 64].

Глава 4. Возможности оптимизации фазированных антенных решеток в различных условиях

4.1 Исследование радиочастотных зависимостей

На практике использование высоко симметричных ФАР вызывает особый интерес из следующих соображений: измерение матрицы сопротивлений является тривиальной задачей, в то время как измерение парциальных полей требует большое количество приемников для всех возможных направлений излучения. Использование высокосимметричных ФАР позволяет выполнить расчеты для одного направления и затем легко адаптировать их для других симметричных направлений. Другой особенностью, влияющей на результаты моделирования, является наличие потерь в земле (см. [14]). Чтобы ослабить этот эффект, антенные системы с противовесами подняты над землей на 2м.

В данной главе изучается, как изменяется общий коэффициент усиления с ростом радиочастоты и плотности системы противовесов. Общий коэффициент усиления является суммой частичных коэффициентов усиления в двух ортогональных поляризациях. Плотность системы противовесов определяется числом продольных и поперечных проводов, относящихся к одному и тому же излучателю. Частота изменяется от 5 до 30 МГц. Вычисления производились на решетках ШВИ, состоящих из 8 излучателей. Для расчета матрицы сопротивлений и матрицы излучений использовался пакет моделирования антенных систем NEC2 [43].

Для проведения вычислительного эксперимента использовался решатель BARON в пакете GAMS. Результаты оптимизации направленности решетки сравниваются с коэффициентом усиления одиночного излучателя, установленного в центре такой же системы противовесов. Плотность системы противовесов обозначается в формате long: trans, где long - число продольных проводов, относящихся к одному излучателю, а trans - поперечных. Высота каждого ШВИ - 15м. В качестве направления оптимизации выбирается 70° полярного угла и 45° азимутального угла в сферических координатах.

На рис. 4.1 показано, как изменяется коэффициент усиления с ростом радиочастоты. Можно наблюдать, что при крайних значениях частоты 5 и 30 МГц

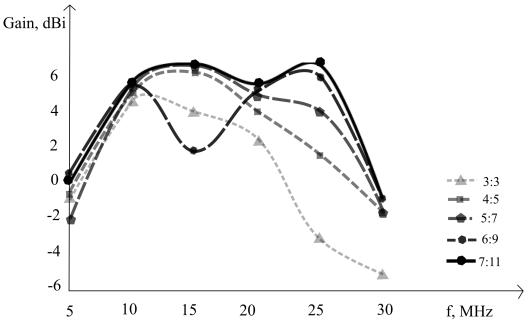


Рисунок 4.1 — Зависимость от частоты общего коэффициента усиления ФАР при оптимизации в направлении 70:45

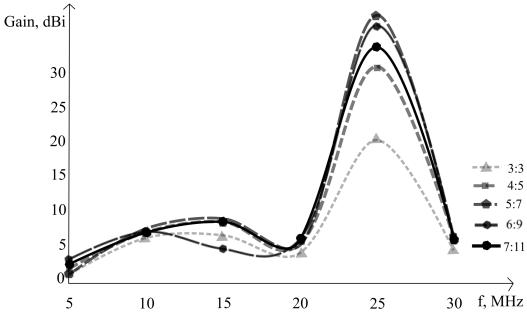


Рисунок 4.2 — Сравнение коэффициентов усиления ФАР и одиночного излучателя

решетка малоэффективна. Также можно увидеть, что, в основном, увеличение плотности системы противовесов приводит к росту коэффициента усиления. Единственное исключение - решетка с плотностью системы противовесов 6 : 9 на частоте 15МГц, где наблюдается неожиданное падение коэффициента усиления. Такое поведение может быть объяснено тем, что BARON не достиг глобалного оптимума.

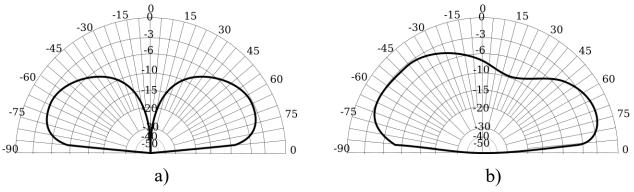


Рисунок 4.3 — Вертикальный план диаграммы направленности одиночного излучателя (а) и ФАР 5:7 (b) при 5МГц

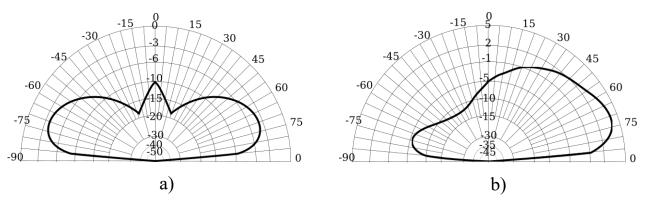


Рисунок 4.4 — Вертикальный план диаграммы направленности одиночного излучателя (a) и ФАР 5:7 (b) при 10МГц

На рис. 4.2 показано, как изменяется соотношение коэффициентов усиления ФАР и одиночного излучателя с ростом частоты. Заметным результатом здесь является то, что на частоте 25МГц усиление ФАР существенно больше усиления одиночного излучателя. Объяснение этого эффекта будет приведено далее при сравнении диаграмм направленности. При 5МГц усиление ФАР существенно не превосходит усиление одиночного излучателя, однако уже на 10МГц разница возрастает до 7.53дБ. Даже при 30МГц, где ФАР малоэффективна, разница с одиночным излучателем составляет 6.63дБ в лучшем случае и 4.84дБ в худшем.

Далее будут рассмотрены диаграммы направленности ФАР с плотностью противовесов 5:7 как один из наиболее типичных результатов.

При частоте 5МГц (см. рис. 4.3) мы можем наблюдать, что максимум усиления в случае Φ AP приходится на 70° и превосходит соответствующее значение одиночного излучателя на 1.33 дБ. Использование Φ AP с плотностью системы противовесов 6:9 позволяет увеличить этот параметр до 3.14 дБ.

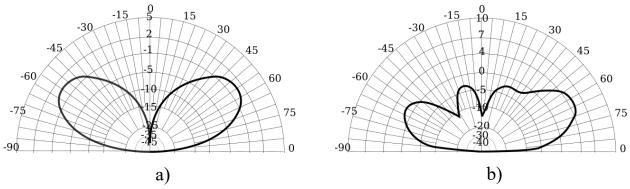


Рисунок 4.5 — Вертикальный план диаграммы направленности одиночного излучателя (a) и ФАР 5:7 (b) при 20МГц

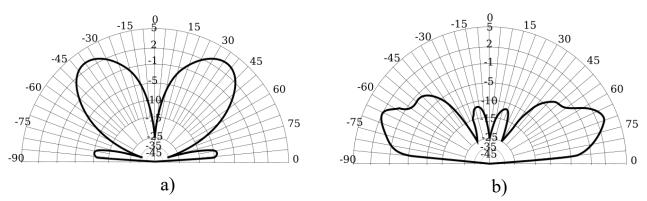


Рисунок 4.6 — Вертикальный план диаграммы направленности одиночного излучателя (a) и ФАР 5:7 (b) при 25МГц

Результат оптимизации более заметен при частоте 10МГц (см Рис. 4.4): задний лепесток существенно меньше и разница усиления к одиночному излучателю достигает примерно 8 дБ. Похожие результаты наблюдаются при частоте 15МГц.

При 20МГц можно наблюдать, что как в случае одиночного излучателя, так и в случае ФАР, коэффициент усиления падает по отношению к результату при 15МГц (см Рис. 4.1). Диаграмма направленности изображена на рис. 4.5.

Интересный результат наблюдается при 25МГц (см Рис. 4.6), где усиление ФАР существенно больше усиления одиночного излучателя. Сравнение их диаграмм направленности показывает, что одиночный излучатель мало излучает в направлении оптимизации, тогда как ФАР имеет максимум излучения в этом направлении. Невозможно было бы достигнуть такого явления без учета взаимного влияния. Отсюда следует, что при оптимизации направленности ФАР КВ диапазона не следует пренебрегать взаимным влиянием, поскольку это может существенно изменить вид диаграммы направленности.

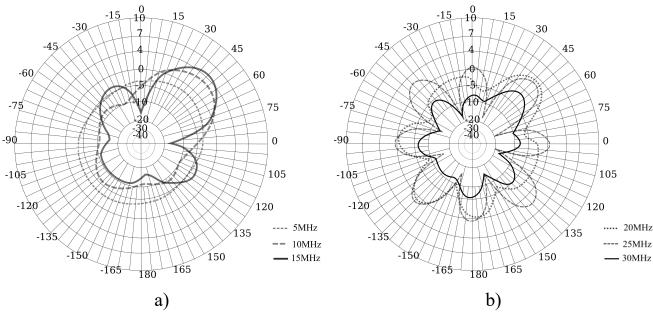


Рисунок 4.7 — Горизонтальный план диаграммы направленности для ФАР 5:7 $5\text{-}15\text{M}\Gamma\text{ц}$ (a) и $20\text{-}30\text{M}\Gamma\text{ц}$ (b)

Далее рассмотрим, как горизонтальный план диаграммы направленности меняется с ростом частоты (см. рис. 4.7). Направление оптимизации - 45°. Здесь мы можем наблюдать, что при частоте, равной 5МГц, диаграмма направленности представляется почти овальной формой. Дальнейшее увеличение частоты до 15МГц приводит диаграмму направленности к направленной форме. Затем увеличение частоты ведет к довольно сложной форме, при которой максимум излучения становится менее ярко выражен.

4.2 Исследование взаимного влияния излучателей

Все эксперименты проводились при реальной земле, рассчитанной по методу Зоммерфельда-Нортона пакетом NEC-2. Для проведения эксперимента было выбрано несколько частот в рабочем диапазоне, однако все приведенные в данной главе результаты приходятся на 5 МГц, поскольку именно эти результаты носят наиболее иллюстративный характер. Рассмотрим случай фазирования решетки без учета взаимного влияния ее элементов. Для этого обратимся к формуле (1.5). Если пренебречь взаимным влиянием излучателей, плотность мощности F будет максимальна тогда, когда комплексные амплитуды парциальных полей будут синфазны. В данной главе производилось сравнение диаграмм

направленности решеток разных конфигураций после математической оптимизации их направленности в заданном направлении согласно модели (1.13) с соответствующими диаграммами одиночного излучателя и со случаем фазирования решетки без учета взаимного влияния (далее – простое фазирование). Для проведения вычислительного эксперимента использовался решатель BARON в пакете GAMS, поскольку, как правило, он обеспечивает большую точность решений по сравнению с градиентным подъемом. Высота каждого ШВИ равна 15 м. Длина плеча симметричных излучателей также равна 15м. Каждая кольцевая решетка состоит из восьми излучателей. Направление оптимизации по умолчанию было установлено на 70° полярного угла и 45° азимутального угла в сферических координатах. Для некоторых экспериментов было проведено дополнительное исследование при 85° полярного угла.

4.2.1 Широкополосные вертикальные излучатели

В рамках данного эксперимента производилось сравнение диаграмм направленности при варьировании расстояния центра излучателя до центра решетки (от 7 до 80м), длины радиальных противовесов (от 3 до 20м) и присутствия или отсутствия общей системы противовесов. Диаграммы направленности при этом имели различную форму, однако качественно различие между коэффициентами усиления всегда сохранялось (см. рис. 4.8): результат оптимизации не давал значимого преимущества перед простым фазированием. Модули диагональных и недиагональных элементов матрицы проводимостей в указанном примере не превосходили 0.002 и 0.0003 См соответственно.

4.2.2 Широкополосные вертикальные диполи

Для ШВД производилось исследование диаграмм направленности при варьировании расстояния центра излучателя до центра решетки от 5 до 50м. В большинстве случаев использование решения задачи математического программирования не давало существенного преимущества перед простым фазировани-

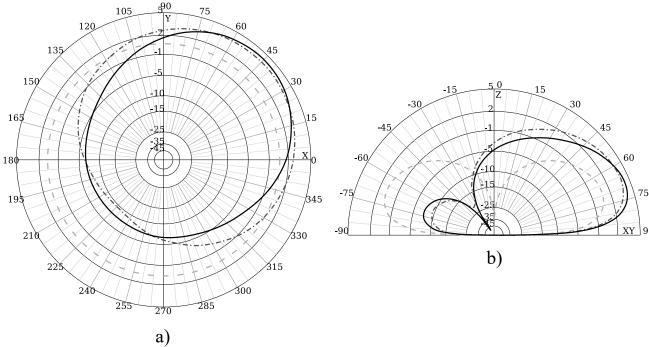


Рисунок 4.8 — Горизонтальная (а) и вертикальная (b) плоскость диаграммы направленности ШВИ при расстоянии от центра излучателя до центра решетки 8м и длине радиальных противовесов 5м. Пунктирной линией обозначено усиление одиночного излучателя, штрихпунктирной — простое фазирование, сплошной — решение задачи мат. программирования.

ем (см. рис. 4.10 и 4.11). Модули диагонального и недиагонального элементов матрицы проводимостей в приведенных примерах не превосходили 0.016 и 0.006См соответственно. Тем не менее, при расстоянии между центром излучателя и центром решетки равным 20м это различие составило около 4 дБ (см. рис. 4.12). Здесь модули диагональных и недиагональных элементов матрицы проводимостей не превосходили 0.013 и 0.008См соответственно.

Также была произведена серия экспериментов при частоте 25МГц, однако, существенных преимуществ обнаружено не было (см. рис. 4.13).

4.2.3 Симметричные вертикальные диполи

Для решетки СВД при оптимизации в направлении полярного угла равном 70° при варьировании расстояния от центра излучателя до центра решетки от 35 до 37м разница между коэффициентом усиления решения задачи математического программирования и усилением простого фазирования также достигала

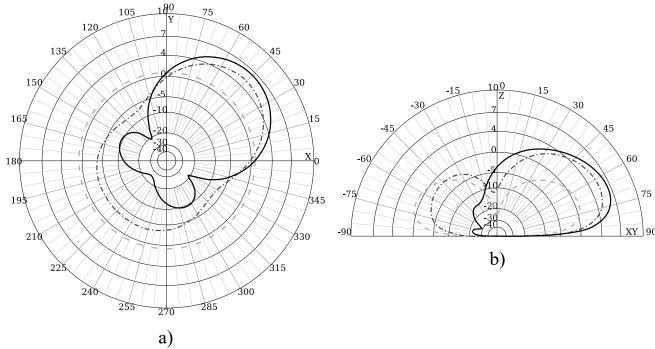


Рисунок 4.9 — Горизонтальная (а) и вертикальная (b) плоскость диаграммы направленности ШВИ при расстоянии от центра излучателя до центра решетки 15м и длиной радиальных противовесов 5м. Пунктирной линией обозначено усиление одиночного излучателя, штрихпунктирной — простое фазирование, сплошной — решение задачи мат. программирования.

4дБ. При этом модули диагональных и недиагональных элементов матрицы проводимостей не превосходили 0.033 и 0.021См соответственно.

При оптимизации в направлении полярного угла равном 85° при варьировании расстояния от центра излучателя до центра решетки от 25 до 29м эта разница достигала 5дБ. (см. рис. 4.19). Здесь модули диагональных и недиагональных элементов матрицы проводимостей не превосходили 0.015 и 0.009См соответственно.

4.2.4 Интерпретация результатов экспериментов по исследованию взаимного влияния излучателей

В рамках данного исследования было выявлено наличие ситуаций, в которых коэффициент усиления, соответствующий решению задачи математического программирования, имеет существенное преимущество перед коэффициентом усиления простого фазирования. Например, при оптимизации в

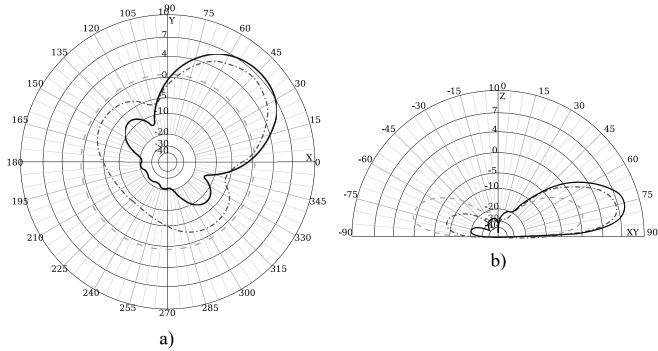


Рисунок 4.10 — Горизонтальная (а) и вертикальная (b) плоскость диаграммы направленности ШВД при расстоянии от центра излучателя до центра решетки 10м при частоте 5МГц. Пунктирной линией обозначено усиление одиночного излучателя, штрихпунктирной — простое фазирование, сплошной — решение задачи мат. программирования.

направлении (70°, 45°) в случае ШВД при расстоянии излучателя до центра решетки равном 20м и СВД при расстоянии излучателя до центра решетки равном 37м разница составляет порядка 4дБ. При оптимизации в направлении (85°, 45°) в случае СВД при расстоянии излучателя до центра решетки равном 25м эта разница достигает 5дБ. Следовательно, при оптимизации направленности ФАР КВ диапазона целесообразны расчеты с учетом взаимного влияния излучателей. В то же время отмечены случаи, когда результат решения задачи математического программирования не дает существенного прироста усиления по сравнению с фазированием без учета взаимного влияния. Использование ШВИ в качестве излучателей ФАР КВ диапазона выглядит малоприменимым, поскольку требуют чрезмерно сложной системы противовесов.

Результаты данного раздела были представлены в [62].

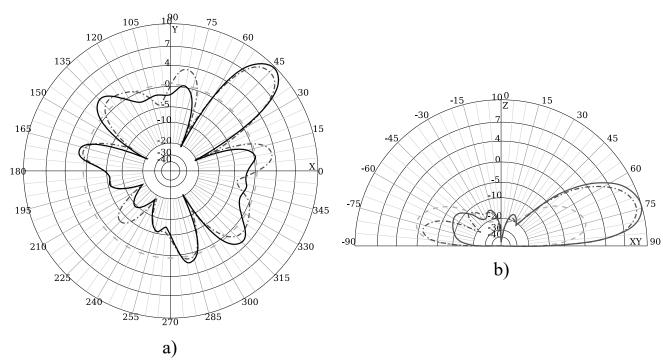


Рисунок 4.11 — Горизонтальная (а) и вертикальная (b) плоскость диаграммы направленности ШВД при расстоянии от центра излучателя до центра решетки 50м при частоте 5МГц. Пунктирной линией обозначено усиление одиночного излучателя, штрихпунктирной — простое фазирование, сплошной — решение задачи мат. программирования.

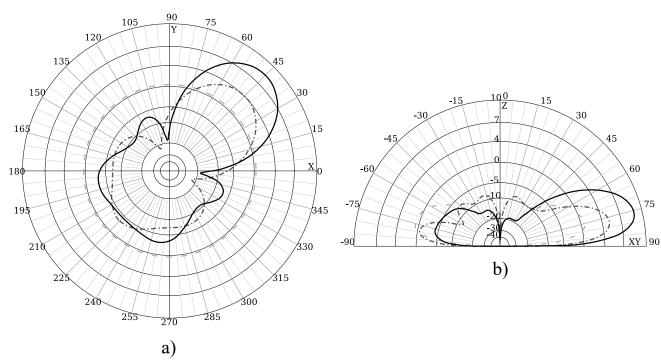


Рисунок 4.12 — Горизонтальная (а) и вертикальная (b) плоскость диаграммы направленности ШВД при расстоянии от центра излучателя до центра решетки 20м при частоте 5МГц. Пунктирной линией обозначено усиление одиночного излучателя, штрихпунктирной — простое фазирование, сплошной — решение задачи мат. программирования.

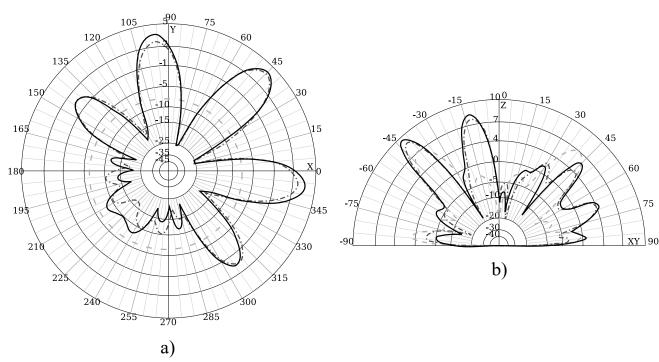


Рисунок 4.13 — Горизонтальная (а) и вертикальная (b) плоскость диаграммы направленности ШВД при расстоянии от центра излучателя до центра решетки 10м при частоте 25МГц. Пунктирной линией обозначено усиление одиночного излучателя, штрихпунктирной — простое фазирование, сплошной — решение задачи мат. программирования.

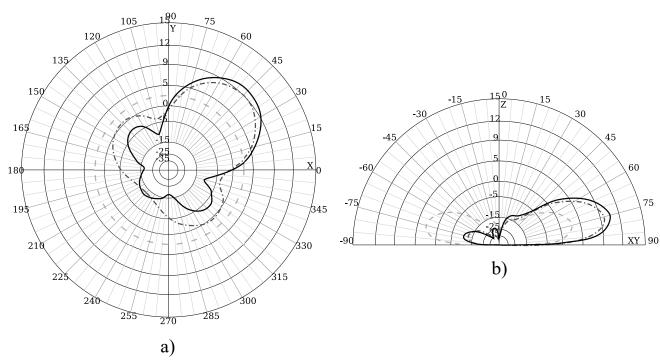


Рисунок 4.14 — Горизонтальная (а) и вертикальная (b) плоскость диаграммы направленности СВД при расстоянии от центра излучателя до центра решетки 15м при оптимизации в направлении 70° полярного угла. Пунктирной линией обозначено усиление одиночного излучателя, штрихпунктирной — простое фазирование, сплошной — решение задачи мат. программирования.

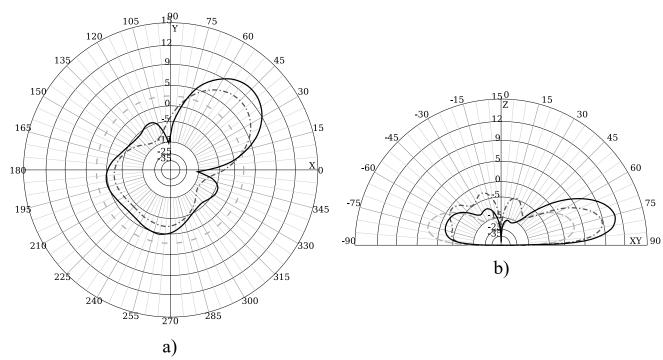


Рисунок 4.15 — Горизонтальная (а) и вертикальная (b) плоскость диаграммы направленности СВД при расстоянии от центра излучателя до центра решетки 25м при оптимизации в направлении 70° полярного угла. Пунктирной линией обозначено усиление одиночного излучателя, штрихпунктирной — простое фазирование, сплошной — решение задачи мат. программирования.

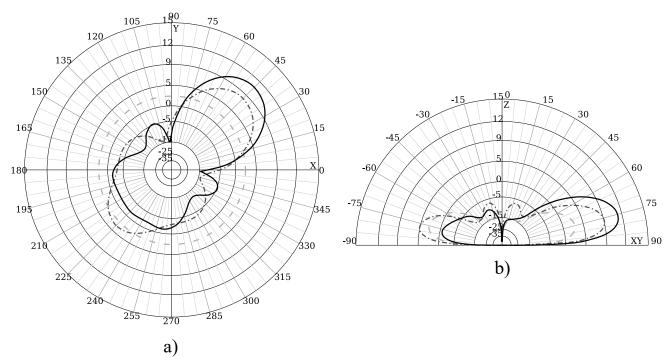


Рисунок 4.16 — Горизонтальная (а) и вертикальная (b) плоскость диаграммы направленности СВД при расстоянии от центра излучателя до центра решетки 27м при оптимизации в направлении 70° полярного угла. Пунктирной линией обозначено усиление одиночного излучателя, штрихпунктирной — простое фазирование, сплошной — решение задачи мат. программирования.

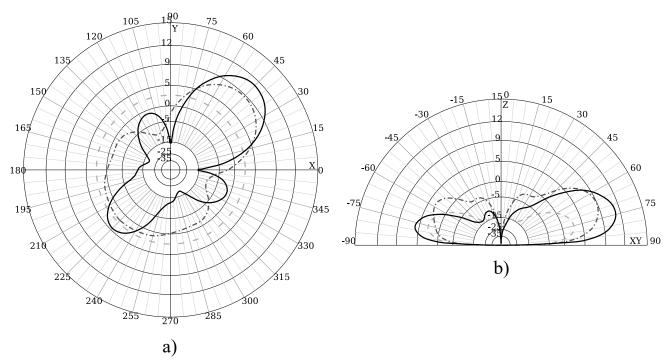


Рисунок 4.17 — Горизонтальная (а) и вертикальная (b) плоскость диаграммы направленности СВД при расстоянии от центра излучателя до центра решетки 35м при оптимизации в направлении 70° полярного угла. Пунктирной линией обозначено усиление одиночного излучателя, штрихпунктирной — простое фазирование, сплошной — решение задачи мат. программирования.

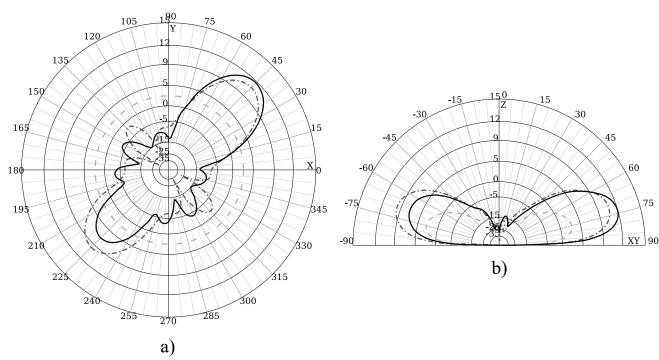


Рисунок 4.18 — Горизонтальная (а) и вертикальная (b) плоскость диаграммы направленности СВД при расстоянии от центра излучателя до центра решетки 40м при оптимизации в направлении 70° полярного угла. Пунктирной линией обозначено усиление одиночного излучателя, штрихпунктирной — простое фазирование, сплошной — решение задачи мат. программирования.

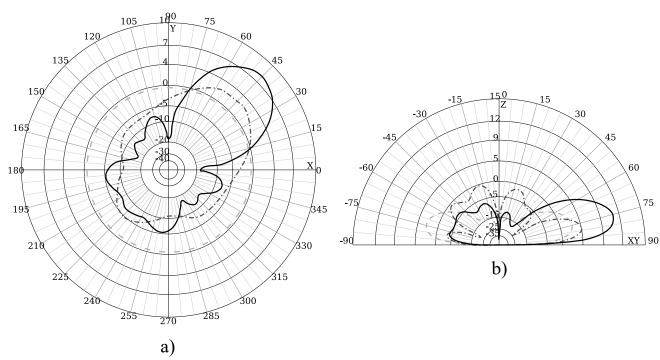


Рисунок 4.19 — Горизонтальная (а) и вертикальная (b) плоскость диаграммы направленности СВД при расстоянии от центра излучателя до центра решетки 25м при оптимизации в направлении 85° полярного угла. Пунктирной линией обозначено усиление одиночного излучателя, штрихпунктирной — простое фазирование, сплошной — решение задачи мат. программирования.

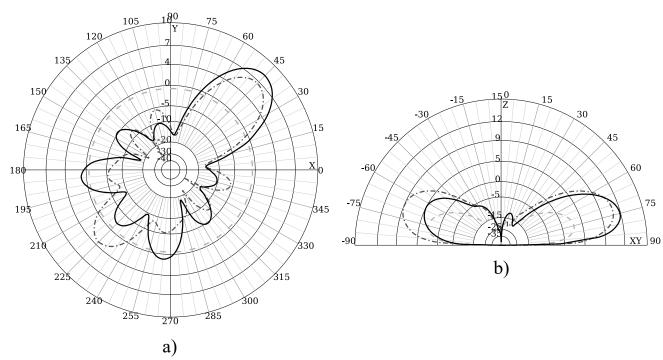


Рисунок 4.20 — Горизонтальная (а) и вертикальная (b) плоскость диаграммы направленности СВД при расстоянии от центра излучателя до центра решетки 45м при оптимизации в направлении 85° полярного угла. Пунктирной линией обозначено усиление одиночного излучателя, штрихпунктирной — простое фазирование, сплошной — решение задачи мат. программирования.

ЗАКЛЮЧЕНИЕ

Основные результаты работы заключаются в следующем.

- 1. В ходе вычислительного эксперимента показано, что задача оптимизации направленности фазированной антенной решетки имеет многочисленные локальные оптимумы, большое число из которых совпадают по целевой функции, однако не эквивалентны между собой относительно равного сдвига фаз во всех излучателях.
- 2. Установлено, что непрерывная подгруппа линейных симметрий для рассматриваемых задач оптимизации направленности фазированной антенной решетки одномерна и ее элементы соответствуют сдвигу фаз во всех излучателях на равную величину, что позволяет снизить размерность задачи на одну переменную и сократить время счета коммерческого решателя BARON.
- 3. Предложена модификация алгоритма дифференциальной эволюции в комбинации с градиентным алгоритмом, учитывающая специфику задачи оптимизации направленности фазированной антенной решетки и показавшая свою конкурентоспособность по сравнению с коммерческим решателем BARON с преимуществом на задачах большей размерности.
- 4. В результате вычислительного эксперимента по исследованию влияния расположения излучателей и используемой радиочастоты на эффективность работы алгоритмов оптимизации было обнаружено, что имеются конфигурации, при которых усиление ФАР существенно превосходит усиление одиночного излучателя.
- 5. Выявлены ситуации, в которых коэффициент усиления, соответствующий решению задачи квадратичной оптимизации, имеет существенное преимущество (до 5 дб) перед коэффициентом усиления, получаемым стандартным методом фазирования без учета взаимного влияния.

В заключение автор выражает благодарность и большую признательность научному руководителю Еремееву А. В. за поддержку, помощь, обсуждение результатов и научное руководство. Особую благодарность автор выражает Юркову А. С. за консультации по радиотехническим аспектам работы, помощь в организации вычислительных экспериментов и интерпретации полученных

результатов. Также автор благодарит авторов шаблона *Russian-Phd-LaTeX-Dissertation-Template* за помощь в оформлении диссертации.

Исследование выполнено при финансовой поддержке Российского фонда фундаментальных исследований (проект № 19–37–90066/19)

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. *Еремеев А. В.*, *Ривс К. Р.* О доверительных интервалах для числа локальных оптимумов [Текст] // Математические структуры и моделирование. 2017. T. 41. C. 55-74.
- 2. *Еремин И. И.*, *Астафьев Н. Н.* Введение в теорию линейного и выпуклого программирования [Текст]. Наука, 1976. 192 с.
- 3. *Кочетов Ю. А.* Вычислительные возможности локального поиска в комбинаторной оптимизации [Текст] // Журнал вычислительной математики и математической физики. 2008. Т. 48, № 5. С. 747—763.
- 4. *Нестеров Ю. Е.* Введение в выпуклую оптимизацию [Текст]. M:МЦНМО, 2010. 70 с.
- 5. *Нечаева М. С., Хамисов О. В.* Метод ветвей и границ для задачи минимизации невыпуклой квадратичной функции при выпуклых квадратичных ограничениях [Текст] // Дискретный анализ и исследование операций. 2000. Т. 7, № 2. С. 74—88.
- 6. *Сазонов Д. М.* Антенны и устройства СВЧ [Текст]. М: Высшая школа, 1988.
- 7. *Симанчев Р. Ю.* Линейные симметрии многогранника паросочетаний и автоморфизмы графа [Текст] // Вестник Омского университета. 1996. Т. 1. С. 18—20.
- 8. Стрекаловский А. С. О минимизации разности выпуклых функций на допустимом множестве [Текст] // Журнал вычислительной математики и математической физики. 2003. Т. 43, № 3. С. 399—409.
- 9. *Фаняев И. А.*, *Кудин В. П.* Синтез амплитудного распределения на входах излучателей фазированной антенной решетки над цилиндрической поверхностью методом роя частиц [Текст] // Доклады БГУИР. 2017. С. 89—96.
- 10. Фаняев И. А., Кудин В. П. Фазированная антенная решетка кругового обзора над проводящей цилиндрической поверхностью из излучателей вертикальной поляризации [Текст] // Известия Гомельского государственного университета имени Ф. Скорины. Сер.: Естественные науки. 2014. С. 191—198.

- 11. Червяков О. В. Аффинные симметрии многогранника, системы независимости с единичным сдвигом [Текст] // Дискретный анализ и исследование операций. 1999. Т. 2, № 2. С. 82—96. (2-я сер.)
- 12. Щелкунов С. А., Фрис Г. Антенны: Теория и практика. [Текст]. М:Советское радио, 1955.
- 13. *Юрков А. С.* Максимизация направленности фазированных антенных решеток коротковолнового диапазона [Текст] // Техника радиосвязи. ОНИИП. 2016. № 2. С. 46—53.
- 14. *Юрков А. С.* О влиянии потерь в земле на работу четырехэлементной ФАР КВ диапазона [Текст] // Научно-технический сборник «Техника радиосвязи». 2014. № 1. С. 78—81.
- 15. Юрков А. С. Оптимизация возбуждения передающих фазированных антенных решеток декаметрового диапазона длин волн [Текст]. ОНИИП, 2014.
- 16. *Aoki M.* Introduction to optimization techniques. Fundamentals and applications of nonlinear programming [Text]. California Univ. Los Angeles, Dept. of System Science, 1971.
- 17. *Balas E*. Optimized crossover-based genetic algorithms for the maximum cardinality and maximum weight clique problems [Text] // Journal of Heuristics. 1998. Vol. 4, no. 2. P. 107—122.
- 18. *Bödi R.*, *Herr K.*, *Joswig M.* Algorithms for highly symmetric linear and integer programs [Text] // Mathematical Programming. 2013. Vol. 137. P. 65—90. (A).
- 19. *Castillo J. C.*, *Segura C*. Differential evolution with enhanced diversity maintenance [Text] // Optim. Lett. 2020. Vol. 14, no. 6. P. 1471—1490. URL: https://doi.org/10.1007/s11590-019-01454-5.
- 20. Costa A., Hansen P., Liberti L. On the impact of symmetry-breaking constraints on spatial Branch-and-Bound for circle packing in a square [Text] // Discrete Applied Mathematics. 2013. Vol. 161, no. 1. P. 96—106.
- 21. *Das S.*, *Suganthan P.* Differential evolution: A survey of the state-of-the-art [Text] // IEEE Transactions on Evolutionary Computation. 2011. Vol. 15, no. 1. P. 4—31.
- 22. *Doerr B.* Runtime analysis of evolutionary algorithms via symmetry arguments [Text] // Information Processing Letters. 2021. Vol. 166. P. 106064.

- 23. *Eberhart R.*, *Kennedy J.* Particle swarm optimization [Text] // Proceedings of the IEEE International Conference on Neural Networks. Vol. 4. IEEE, 1995. P. 1942—1948.
- 24. Efficient approach for fast synthesis of phased arrays with the aid of a hybrid genetic algorithm and a smart feed representation [Text] / A. V. Boriskin [et al.] // 2010 IEEE International Symposium on Phased Array Systems and Technology. 2010. P. 827—832.
- 25. Eremeev A. V., Yurkov A. S. On Symmetry Groups of Some Quadratic Programming Problems [Text] // Kononov, A., Khachay, M., Kalyagin, V., Pardalos, P. (eds) Mathematical Optimization Theory and Operations Research. MOTOR 2020. Lecture Notes in Computer Science. 2020. Vol. 12095. P. 35—48.
- 26. Fuchs B. Application of convex relaxation to array synthesis problems [Text] // IEEE Transactions on Antennas and Propagation. 2014. Vol. 62, no. 2. P. 634—640.
- 27. *Garnier J.*, *Kallel L.* How to detect all maxima of a function [Text] // Theoretical Aspects of Evolutionary Computing / ed. by L. Kallel, B. Naudts, A. Rogers. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. P. 343—370.
- 28. *Gatermann K.*, *Parrilo P. A.* Symmetry groups, semidefinite programs, and sums of squares [Text] // Journal of Pure and Applied Algebra. 2004. Vol. 192, no. 1. P. 95—128.
- 29. *Hampson S.*, *Kibler D.* Plateaus and plateau search in Boolean satisfiability problems: When to give up searching and start again [Text] // Proceedings of the second DIMACS Implementation Challenge "Cliques, Coloring and Satisfiability". 1996. P. 437—456.
- 30. *Himmelblau D. M.* Applied nonlinear programming [Text]. McGraw Hill Companies, 1972.
- 31. *Horn R. A., Johnson C. R.* Matrix analysis [Text]. Cambridge University Press, 1990.
- 32. Horst R., Pardalos P. M. Handbook of global optimization [Text]. Vol. 2. Springer Science & Business Media, 2013.
- 33. *Horst R.*, *Tyu H.* Global optimization: Deterministic approaches [Text]. Springer Science & Business Media, 2013. P. 551—566.

- 34. *Kolokolov A. A.*, *Orlovskaya T. G.*, *Rybalka M. F.* Analysis of integer programming algorithms with L-partition and unimodular transformations [Text] // Automation and Remote Control. 2012. Vol. 73, no. 2. P. 369—380.
- 35. *Kouyialis G., Wang X., Misener R.* Symmetry Detection for Quadratic Optimization Using Binary Layered Graphs [Text] // Processes. 2019. Vol. 7, no. 11. P. 838.
- 36. Lancaster P., Tismenetsky M. The Theory of Matrices [Text]. Academic Press, 1985.
- 37. *Liberti L.* Reformulations in mathematical programming: automatic symmetry detection and exploitation [Text] // Mathematical Programming. 2012. Vol. 131, issue 1/2.
- 38. *Luo Z.*, *Chang T.* SDP relaxation of homogeneousquadratic optimization: approximationbounds and applications [Text] // Convex Optimization in Signal Processing and Communications. 2009. P. 117—165.
- 39. *Margot F.* Symmetry in Integer Linear Programming [Text] // 50 Years of Integer Programming 1958-2008: From the Early Years to the State-of-the-Art / ed. by M. Jünger [et al.]. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. P. 647—686.
- 40. *Murty K*. Some NP-complete Problems in Quadratic and Nonlinear Programming [Text] // Mathematical Programming. North Holand. 1987. Vol. 39. P. 117—129.
- 41. *Nelder J.*, *Mead R*. A simplex method for function minimization [Text] // The Computer Journal. 1965. Vol. 7, no. 4. P. 308—311.
- 42. *Noguchi H.*, *Tomohiro H.*, *Thawonmas R.* Parallel Differential Evolution Applied to Interleaving Generation with Precedence Evaluation of Tentative Solutions [Text] // 2021 Genetic and Evolutionary Computation Conference (GECCO '21). 2021. P. 706—713.
- 43. Numerical electromagnetic code (NEC) [Text] / G. J. Burke [et al.] // 1979 IEEE International Symposium on Electromagnetic Compatibility. IEEE. 1979. P. 1—3.
- 44. *Pfetsch M.*, *Rehn T. A.* A computational comparison of symmetry handling methods for mixed integer programs [Text] // Mathematical Programming Computation. 2019. Vol. 11. P. 37—93.

- 45. *Price K. V., Storn R. M., Lampinen J. A.* Differential Evolution. A Practical Approach to Global Optimization [Text]. Springer, 2005.
- 46. *Price W. L.* Global optimization by controlled random search [Text] // Journal of Optimization Theory and Applications. 1983. Vol. 40, no. 3. P. 333—348.
- 47. *Prugel-Bennett A.* Symmetry Breaking in Population-Based Optimization [Text] // Transactions on Evolutionary Computation. 2004. Feb. Vol. 8, no. 1. P. 63—79.
- 48. *Rao A.*, *Sarma N.* Synthesis of reconfigurable antenna array using differential evolution algorithm [Text] // IETE Journal of Research. 2017. Vol. 63, no. 3. P. 428—434.
- 49. *Reeves C. R.*, *Eremeev A. V.* Statistical analysis of local search landscapes [Text] // Journal of the Operational Research Society. 2004. Vol. 55, no. 7. P. 678—693.
- 50. Ryoo H. S., Sahinidis N. V. Global Optimization of Nonconvex NLPs and MINLPs with Applications in Process Design [Text] // Computers and Chem. Engng. Pergamon. 1995. Vol. 19, no. 5. P. 551—566.
- 51. *Shor N. Z.* Semidefinite Programming Bounds for Extremal Graph Problems [Text] // Nondifferentiable Optimization and Polynomial Problems. Boston, MA: Springer US, 1998. P. 265—298.
- 52. *Stanovov V.*, *Akhmedova S.*, *Semenkin E.* NL-SHADE-LBC algorithm with linear parameter adaptation bias change for CEC 2022 Numerical Optimization [Text] // 2022 IEEE Congress on Evolutionary Computation (CEC). 2022. P. 1—8.
- 53. Storn R., Price K. Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces [Text] // Journal of global optimization. 1997. Vol. 11, no. 4. P. 341—359.
- 54. *Strekalovsky A. S.* Global optimality conditions in nonconvex optimization [Text] // Journal of Optimization Theory and Applications. 2007. Vol. 173, no. 3. P. 770—792.
- 55. Synthesis of Conical Phased Antenna Arrays Optimization of Amplitude Distribution Parameters [Text] / M. Indenbom [et al.] // IX International Conference on Optimization and Applications (OPTIMA 2018). 2018. P. 273—285.

- 56. *Tawarmalani M.*, *Sahinidis N. V.* Global optimization of mixed-integer nonlinear programs: A theoretical and computational study [Text] // Mathematical programming. 2004. Vol. 99, no. 3. P. 563—591.
- 57. Zhelobenko D. P. Compact Lie Groups and their Representations [Text]. Vol. 40. Providence, AMS, 1973. (Translations of mathematical monographs).
- 58. *Крамер* Γ . Математические методы статистики [Текст]. М. : Мир, 1975.

ПУБЛИКАЦИИ АВТОРА ПО ТЕМЕ ДИССЕРТАЦИИ

В изданиях из списка ВАК РФ или приравненных к ним

- 59. *Еремеев А. В.*, *Тюнин Н. Н.* Алгоритм дифференциальной эволюции для оптимизации направленности фазированных антенных решеток [Текст] // Математические структуры и моделирование. 2022. Т. 62, № 3. С. 57—68.
- 60. *Тюнин Н. Н.* Задачи невыпуклого квадратичного программирования, связанные с оптимизацией фазированных антенных решеток [Текст] // Дискретный анализ и исследование операций. 2021. Т. 28, № 3. С. 20—44.
- 61. *Eremeev A. V., Tyunin N. N., Yurkov A. S.* Non-Convex Quadratic Programming Problems in Short Wave Antenna Array Optimization [Text] // Khachay, M., Kochetov, Y., Pardalos, P. (eds) Mathematical Optimization Theory and Operations Research. MOTOR 2019. Lecture Notes in Computer Science. 2019. Vol. 11548. P. 34—45.
- 62. *Tyunin N. N.* On mutual influence of emitters in directivity optimization of shortwave phased antenna arrays [Text] // Journal of Physics: Conference Series. 2021. Vol. 1901, no. 1. P. 012053.

Зарегистрированные программы для ЭВМ

63. *Свидетельство о гос. регистрации программы для ЭВМ*. Комплекс моделирования и решения задач оптимизации направленности ФАР КВ диапазона «Ехрі» [Текст] / Н. Н. Тюнин. — № 2022666016 ; заявл. 05.07.2022 ; опубл. 24.08.2022, 2022662647 (Рос. Федерация).

В материалах конференций

- 64. *Еремеев А. В., Тюнин Н. Н., Юрков А. С.* Исследование одной задачи квадратичного программирования в оптимизации коротковолновых антенных решеток [Текст] // Радиотехника, электроника и связь. Сборник докладов V Международной научно-технической конференции. 2019. С. 171—174.
- 65. *Еремеев А. В., Тюнин Н. Н., Юрков А. С.* О структуре множества локальных оптимумов задачи оптимизации фазированных антенных решеток [Текст] // Сборник тезисов VII Международной конференции «Проблемы оптимизации и их приложения». 2018. С. 53.
- 66. Тюнин Н. Н. Невыпуклые задачи квадратичного программирования в оптимизации коротковолновых антенных решеток [Текст] // ФМХ ОмГУ 2019: Сборник статей VII Региональной конференции магистрантов, аспирантов и молодых ученых по физике, математике и химии. 2020. С. 48—52.

ПРИЛОЖЕНИЯ

Приложение А

Здесь приводится подробное описание алгоритма исследования структуры локальных оптимумов. Для удобства изложения, алгоритм разбит на процедуры: «Одномерный поиск», «Градиентный подъем» и «Исследование локальных оптимумов».

1. Одномерный поиск.

Дано:

- вектор начального решения **х** размерности 2N,
- вектор направления одномерного поиска **d** размерности 2N,
- точность вычислений ε_{1dim} .

Требуется: найти вектор $\mathbf{x}' = \mathbf{x} + \gamma \mathbf{d}$ такой, что

- $-\tilde{F}(\mathbf{x}) < \tilde{F}(\mathbf{x}'),$
- $\tilde{F}(\mathbf{x} + (\gamma + \varepsilon_{1dim})\mathbf{d}) < \tilde{F}(\mathbf{x}').$
- 1. Инициализировать параметр одномерного поиска $\beta := 1$, вектор $\mathbf{x}' := \mathbf{x}$, счетчик итераций j := 1.
- 2. Если $\tilde{F}(\mathbf{x}' + \beta \mathbf{d}) < \tilde{F}(\mathbf{x}')$, то уменьшить $\beta := \beta/2$. В противном случае, в зависимости от значения счетчика:

при j = 1 положить $\mathbf{x}_a := \mathbf{x}'$,

при j=2 положить $\mathbf{x}_b:=\mathbf{x}'$,

при j = 3 положить $\mathbf{x}_c := \mathbf{x}'$,

при j > 3 положить $\mathbf{x}_a := \mathbf{x}_b, \mathbf{x}_b := \mathbf{x}_c, \mathbf{x}_c := \mathbf{x}'.$

При этом, вне зависимости от значений счетчика, $\beta := 2\beta$,

$$\mathbf{x}' := \mathbf{x}' + \beta \mathbf{d}$$
.

- 3. Если $\beta < \varepsilon_{1dim}$ и j < 3, вернуть \mathbf{x}' .
- 4. Если $\beta < \epsilon_{1dim}$ и $j \geqslant 3$, то переходим к шагу 5, иначе на шаг 2.
- 5. По точкам $\mathbf{x}_a, \mathbf{x}_b, \mathbf{x}_c$ строим квадратичную аппроксимацию:

$$\mathbf{x}^* := (\mathbf{x}_b - 3\beta \mathbf{d}) + \left(\beta \left(1 + \frac{\tilde{F}(\mathbf{x}_a) - \tilde{F}(\mathbf{x}_c)}{2(\tilde{F}(\mathbf{x}_a) - 2\tilde{F}(\mathbf{x}_b) + \tilde{F}(\mathbf{x}_c))}\right)\right) \mathbf{d}.$$

2. Градиентный подъем.

Дано:

- вектор начального решения \mathbf{x}_0 размерности 2N,
- точность вычислений ε_{grad} ,
- точность вычислений одномерного поиска $\varepsilon_{1dim},$
- время принудительного завершения работы алгоритма $time_{finish}.$

Требуется: найти вектор х такой, что для всех

$$\mathbf{d}, |\mathbf{d}| = 1$$
 выполняется $ilde{F}(\mathbf{x} + (arepsilon_{grad})\mathbf{d}) < ilde{F}(\mathbf{x})$

.

- 1. $\mathbf{x} := \mathbf{x}_0$.
- 2. Вычислить и нормировать градиент целевой функции:

$$\mathbf{d} := \frac{\nabla \tilde{F}(\mathbf{x})}{|\nabla \tilde{F}(\mathbf{x})|}.$$

- 3. Вычислить \mathbf{x}^* алгоритмом одномерного поиска 1 с параметрами $\mathbf{x}, \mathbf{d}, \varepsilon_{1dim}.$
- 4. Записать в time текущее время. Если $time \geqslant time_{finish}$, вернуть \mathbf{x}^* .
- 5. Если $|\tilde{F}(\mathbf{x}) \tilde{F}(\mathbf{x}^*)| < \varepsilon_{grad}$, вернуть \mathbf{x}^* , иначе положить $\mathbf{x} = \mathbf{x}^*$ и повторить шаги 2-5.

3. Исследование локальных оптимумов.

Дано:

- x_{max} как верхняя оценка нормы допустимой области,
- точность вычислений ε_{grad} ,
- точность вычислений одномерного поиска $\epsilon_{1dim},$
- время принудительного завершения работы алгоритма $time_{finish}$,
- максимально допустимая норма вектора \mathbf{y} , обозначаемая за \mathbf{y}_{\max} .

Требуется: провести исследование структуры локальных оптимумов, как описано в разделе 2.

- 1. Инициализировать каждую компоненту начального вектора $x_{0,i=\overline{1,2N}}$ равномерно распределенной в интервале $[-x_{\max},x_{\max}]$ величиной.
- 2. Вычисляем допустимый вектор **x** путем масштабирования \mathbf{x}_0 в допустимую область:

$$\mathbf{x} := (\max_{k=\overline{1,n}} \mathbf{x}_0^T \mathbf{H}^{(k)} \mathbf{x}_0)^{-1/2} \mathbf{x}_0.$$

- 3. Вычислить \mathbf{x}^* алгоритмом градиентного подъема (2) с параметрами \mathbf{x} , ε_{qrad} , ε_{1dim} , $time_{finish}$.
- 4. Записать в time текущее время. Если $time < time_{finish}$, перейти на шаг 1.
- 5. Для каждого найденного решения установить $\mathbf{x}_0^* = \mathbf{x}^*$, составить линеаризованную задачу (2.2) и найти ее решение \mathbf{x}_{lp}^* .
- 6. Исключить решения, для которых $|\mathbf{x}_0^* \mathbf{x}_{lp}^*| > \mathbf{y}_{\max}$. В случае оставшихся решений установить $\mathbf{x} = \mathbf{x}_{lp}^*$ и повторить шаги 2-3. Оценить норму разницы $|\mathbf{x}_0^* \mathbf{x}^*|$. Вернуть \mathbf{x}_0^* с лучшим значением $\tilde{F}(\mathbf{x}_0^*)$ в качестве результата.

Приложение Б

Комплекс моделирования и решения задач оптимизации направленности ФАР КВ диапазона «Ехрі» предназначен для моделирования антенных систем и вычисления управляющих параметров фазированных антенных решеток (ФАР). Регистрируемая программа для ЭВМ применима в радиотехнике при оптимизации направленного излучения ФАР КВ диапазона. Программа позволяет запускать файлы заданного формата с инструкциями по организации вычислительного эксперимента, редактировать их, визуализировать результаты. Здесь приводится графический интерфейс и функциональные возможности разработанного в рамках текущей работы программного комплекса «Ехрі».

Графический интерфейс

Программное окно разделено на три части: обозреватель текущей директории, окно вывода и рабочая область. Содержимое рабочей области меняется, в зависимости от выбранного файла. В случае, если выбран файл эксперимента (.exp), оно представляет собой редактор текстового файла (рис. (4.21)). Для файла формата .nec будет представлен обозреватель геометрии антенной системы (рис. (4.22)), Для файлов формата .svg, в которые производится запись диаграмм направленности, приводится предпросмотр данного графического формата (рис. (4.23)).

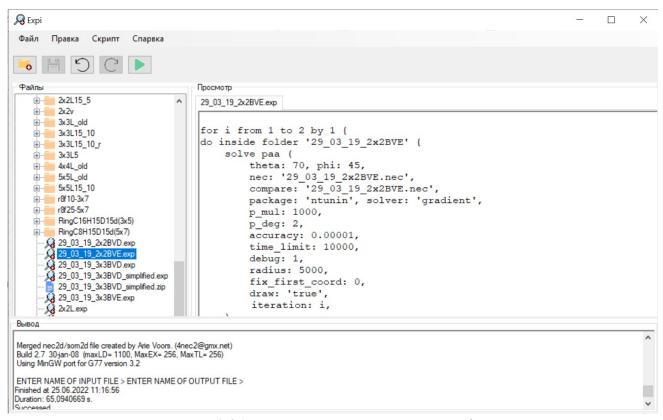


Рисунок 4.21 — Редактор исполняемых файлов

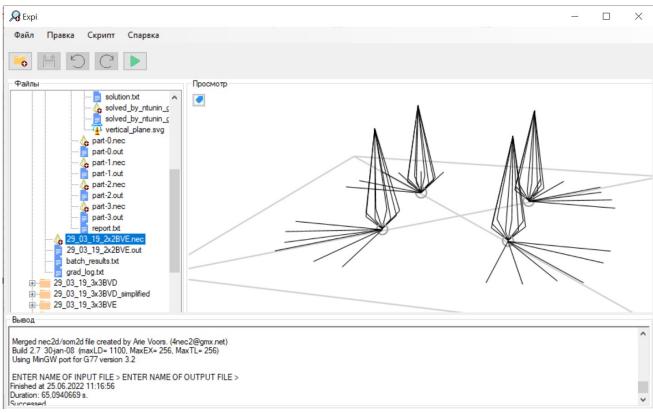


Рисунок 4.22 — Предпросмотр геометрии

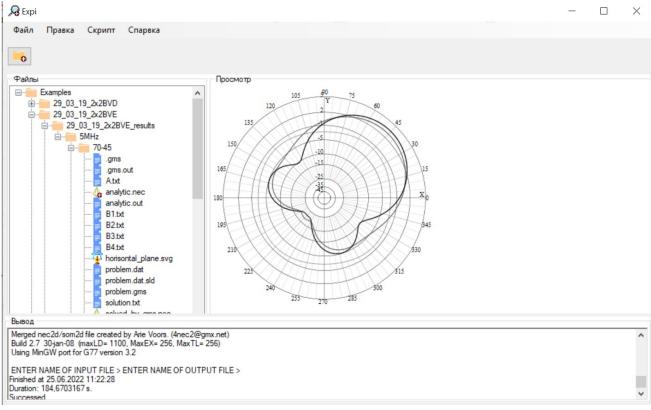


Рисунок 4.23 — Предпросмотр результатов

Языковые конструкции

Комплекс «Ехрі» является, по сути, скриптовым интерпретатором одноименного языка, также разработанного автором в рамках текущей работы. Далее

Листинг 4.1: Переменные

```
def x = 1
def point = (0, 0, 1)
```

Листинг 4.2: Сегментированный провод

```
(0, 0, 0) \rightarrow (1, 0, 1) \rightarrow (0, 0, 5)

(0, 0, 0) \rightarrow (1, 0, 1) \sim 1 \text{v} \sim (0, 0, 5)

(0, 0, 0) \rightarrow (1, 0, 1) \sim 1 + 0.5 \text{iA} \sim (0, 0, 5)
```

Листинг 4.3: Линейные преобразования

```
translate x to 0.5 translate to (0, 0, 1) rotate around z by pi/2
```

Листинг 4.4: Циклы

```
for angle from 0 to 2 * pi by pi/8 {
    rotate around z by angle
    (0, 0, 0) -> (1, 0, 0)

5 }

for angle from 0 up to 2 * pi by pi/8 {
    rotate around z by angle
    (0, 0, 0) -> (1, 0, 0)

10 }
```

Листинг 4.5: Группы команд

```
def Emitter {
    for angle from 0 to 2 * pi by pi/8 {
        rotate around z by angle
        (0, 0, 0) -> (1, 0, 0)

5    }
}

translate x to -5
Emitter

translate x to 5
Emitter
```

Листинг 4.6: Оптимизация направленности ФАР

```
solve paa (
```

```
n: 'bve_2x2.nec',
theta: 70,
phi: 45,
p: 'ntunin',
s: 'grad',
c: 'bve.nec',
p_mul: 1000000,
p_deg: 4,
time_limit: 1000,
accuracy: 0.000001
```

Листинг 4.7: Полный текст примера вычислительного эксперимента

```
def knees = 8
   def height = 15
   def kneeWidth = 2.5
 5 | \text{def base} = 0.5
   def rize = 2
   def radialsCount = 6
   def radialLength = 15
   def size = 2
10 def distance = 20
   def Drop {
      def step = 2 * pi / knees
      for angle from 0 to 2 * pi by step {
15
         rotate around z by angle
         (0, 0, 0) \rightarrow (kneeWidth, 0, kneeWidth) \rightarrow (0, 0, height)
      }
   }
20 def BVE {
      (0, 0, 0) \sim 1v \sim (0, 0, base)
      def step = pi / 2 / (radialsCount - 1)
      for i from 0 to radialsCount by 1 {
          rotate around z by i * step
           (0, 0, 0) -> (radialLength, 0, 0)
25
      translate z to base
      Drop
   }
30
```

```
def PlaceBVE {
     translate to (x, y, 0)
     rotate around z by angle
     BVE
35 }
  def PAA {
     def width = (size - 1) * distance
      def left = -width/2
     def right = width/2
40
      def top = width/2
      def bottom = -width/2
      PlaceBVE(x: left, y: top, angle: pi / 2)
45
     PlaceBVE(x: right, y: top, angle: 0)
     PlaceBVE(x: right, y: bottom, angle: -pi / 2)
      PlaceBVE(x: left, y: bottom, angle: pi)
  }
50 def ExportPAA {
       export nec (n: 'bve ${size}x${size}.nec', f: 5, g: 'real') {
           translate z to rize
           PAA
       }
55|}
  def One {
       (0, 0, 0) \sim 1v \sim (0, 0, base)
       def oneRadialsCount = (radialsCount - 1) \star 4
       def step = 2 * pi / (oneRadialsCount - 1)
       for i from 0 to oneRadialsCount by 1 {
           rotate around z by i * step
           (0, 0, 0) \rightarrow (radialLength, 0, 0)
       translate z to base
       Drop
  }
  def ExportOne {
       export nec (n: 'bve.nec', f: 5, g: 'real') {
           translate z to rize
           One
       }
```

```
}
 75
   do inside folder '05.04.22' {
        ExportOne
        ExportPAA
 80
        solve paa (
            n: 'bve ${size}x${size}.nec',
            theta: 70,
            phi: 45,
            p: 'ntunin',
 85
            s: 'grad',
            c: 'bve.nec',
            p mul: 1000000,
            p_deg: 4,
            time limit: 1000,
 90
            accuracy: 0.000001
        )
        solve paa (
            n: 'old bve ${size}x${size}.nec',
            theta: 70,
            phi: 45,
 95
            p: 'ntunin',
            s: 'grad',
            c: 'bve.nec',
            p mul: 1000000,
100
            p deg: 4,
            time_limit: 1000,
            accuracy: 0.000001
        )
   }
```

Свидетельство о государственной регистрации

Рисунок 4.24 — Свидетельство о государственной регистрации

Приложение В

УТВЕРЖДАЮ

и.о. ректора ФГАОУ ВО «ОмГУ им. Ф.М. Достоевского»

к.т.н, доцент Замятин С.В.

«<u>//6</u>» сентября 2022 г.

СПРАВКА

о внедрении результатов диссертационной работы Н.Н. Тюнина «Анализ и решение задач оптимизации направленности фазированных антенных решеток коротковолнового диапазона»

Результаты диссертационной работы Тюнина Николая Николаевича «Анализ и решение задач оптимизации направленности фазированных антенных решеток коротковолнового диапазона» на соискание ученой степени кандидата технических наук по специальности 2.3.1 – «Системный анализ, управление и обработка информации» внедрены в учебный процесс на кафедре прикладной и вычислительной математики Омского государственного университета (ОмГУ) им. Ф.М. Достоевского в разделы дисциплины «Эволюционные алгоритмы» при подготовке обучающихся по направлению подготовки 01.04.02 «Прикладная математика и информатика» (уровень магистратуры). Использование представленных в диссертации исследований положительным образом сказывается на качестве профессиональной подготовки магистрантов ОмГУ им. Ф.М. Достоевского по профилю «Исследование операций и системный анализ».

Заведующий кафедрой фундаментальной и прикладной математики, к.ф.-м.н., доц.

Леванова

УТВЕРЖДАЮ

Заместитель генерального директора по науке АО «ОНИИП»

к.ф.-м.н., доцент С.В. Кривальцевич

» сентября 2022 г.

AKT

о внедрении результатов

диссертационного исследования Н.Н. Тюнина «Анализ и решение задач оптимизации направленности фазированных антенных решеток коротковолнового диапазона»

Настоящий акт подтверждает внедрение результатов диссертационной работы Тюнина Николая Николаевича «Анализ и решение задач оптимизации направленности фазированных антенных решеток коротковолнового диапазона», выполненной Омском филиале Федерального государственного бюджетного учреждения науки Института математики им. С.Л. Соболева Сибирского отделения Российской академии наук (ОФ ИМ СО РАН) и представленной на соискание ученой степени кандидата технических наук по специальности 2.3.1 - «Системный анализ, управление и обработка информации».

При выполнении работ по антенной тематике в АО «Омский научноисследовательский институт приборостроения» (АО «ОНИИП») используются установленные в указанной работе системные свойства фазированных антенных решеток коротковолнового диапазона и предложенный автором подход к оптимизации направленности излучения фазированных антенных решеток.

к.т.н, заместитель начальника НТЦ-4 AO «ОНИИП»

В.В. Фомин